EJ
E. Jansen
Author with expertise in Biomedical Applications of Spectroscopy Techniques
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
1,036
h-index:
105
/
i10-index:
404
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Regenerative Effects of Transplanted Mesenchymal Stem Cells in Fracture Healing

Froilán Granero‐Moltó et al.Apr 23, 2009
+7
M
J
F
Abstract Mesenchymal stem cells (MSC) have a therapeutic potential in patients with fractures to reduce the time of healing and treat nonunions. The use of MSC to treat fractures is attractive for several reasons. First, MSCs would be implementing conventional reparative process that seems to be defective or protracted. Secondly, the effects of MSCs treatment would be needed only for relatively brief duration of reparation. However, an integrated approach to define the multiple regenerative contributions of MSC to the fracture repair process is necessary before clinical trials are initiated. In this study, using a stabilized tibia fracture mouse model, we determined the dynamic migration of transplanted MSC to the fracture site, their contributions to the repair process initiation, and their role in modulating the injury-related inflammatory responses. Using MSC expressing luciferase, we determined by bioluminescence imaging that the MSC migration at the fracture site is time- and dose-dependent and, it is exclusively CXCR4-dependent. MSC improved the fracture healing affecting the callus biomechanical properties and such improvement correlated with an increase in cartilage and bone content, and changes in callus morphology as determined by micro-computed tomography and histological studies. Transplanting CMV-Cre-R26R-Lac Z-MSC, we found that MSCs engrafted within the callus endosteal niche. Using MSCs from BMP-2-Lac Z mice genetically modified using a bacterial artificial chromosome system to be β-gal reporters for bone morphogenic protein 2 (BMP-2) expression, we found that MSCs contributed to the callus initiation by expressing BMP-2. The knowledge of the multiple MSC regenerative abilities in fracture healing will allow design of novel MSC-based therapies to treat fractures. Disclosure of potential conflicts of interest is found at the end of this article.
0
Citation501
0
Save
0

Biophysical Mechanisms of Transient Optical Stimulation of Peripheral Nerve

Jonathon Wells et al.May 26, 2007
+4
P
C
J
A new method for in vivo neural activation using low-intensity, pulsed infrared light exhibits advantages over standard electrical means by providing contact-free, spatially selective, artifact-free stimulation. Here we investigate the biophysical mechanism underlying this phenomenon by careful examination of possible photobiological effects after absorption-driven light-tissue interaction. The rat sciatic nerve preparation was stimulated in vivo with a Holmium:yttrium aluminum garnet laser (2.12 microm), free electron laser (2.1 microm), alexandrite laser (750 nm), and prototype solid-state laser nerve stimulator (1.87 microm). We systematically determined relative contributions from a list of plausible interaction types resulting in optical stimulation, including thermal, pressure, electric field, and photochemical effects. Collectively, the results support our hypothesis that direct neural activation with pulsed laser light is induced by a thermal transient. We then present data that characterize and quantify the spatial and temporal nature of this required temperature rise, including a measured surface temperature change required for stimulation of the peripheral nerve (6 degrees C-10 degrees C). This interaction is a photothermal effect from moderate, transient tissue heating, a temporally and spatially mediated temperature gradient at the axon level (3.8 degrees C-6.4 degrees C), resulting in direct or indirect activation of transmembrane ion channels causing action potential generation.
0
Citation378
0
Save
0

Measurement of the production cross section of jets in association with a Z boson in pp collisions at $ \sqrt{s}=7 $ TeV with the ATLAS detector

Georges Aad et al.Jul 1, 2013
+2876
B
T
G
A bstract Measurements of the production of jets of particles in association with a Z boson in pp collisions at $ \sqrt{s}=7 $ TeV are presented, using data corresponding to an integrated luminosity of 4.6 fb −1 collected by the ATLAS experiment at the Large Hadron Collider. Inclusive and differential jet cross sections in Z events, with Z decaying into electron or muon pairs, are measured for jets with transverse momentum p T > 30 GeV and rapidity | y | < 4 . 4. The results are compared to next-to-leading-order perturbative QCD calculations, and to predictions from different Monte Carlo generators based on leading-order and next-to-leading-order matrix elements supplemented by parton showers.
0

Measurement of total and differential W + W − production cross sections in proton-proton collisions at s = 8 $$ \sqrt{s}=8 $$ TeV with the ATLAS detector and limits on anomalous triple-gauge-boson couplings

Georges Aad et al.Sep 1, 2016
+2808
J
B
G
The production of W boson pairs in proton-proton collisions at $$ \sqrt{s}=8 $$ TeV is studied using data corresponding to 20.3 fb−1 of integrated luminosity collected by the ATLAS detector during 2012 at the CERN Large Hadron Collider. The W bosons are reconstructed using their leptonic decays into electrons or muons and neutrinos. Events with reconstructed jets are not included in the candidate event sample. A total of 6636 WW candidate events are observed. Measurements are performed in fiducial regions closely approximating the detector acceptance. The integrated measurement is corrected for all acceptance effects and for the W branching fractions to leptons in order to obtain the total WW production cross section, which is found to be 71.1 ± 1.1(stat) − 5.0 + 5.7 (syst) ± 1.4(lumi) pb. This agrees with the next-to-next-to-leading-order Standard Model prediction of 63. 2 − 1.4 + 1.6 (scale) ± 1.2(PDF) pb. Fiducial differential cross sections are measured as a function of each of six kinematic variables. The distribution of the transverse momentum of the leading lepton is used to set limits on anomalous triple-gauge-boson couplings.
0
Paper
Citation57
0
Save
0

Multimodal Nonlinear Optical and Thermal Imaging Platform for Label-Free Characterization of Biological Tissue

Wilson Adams et al.Apr 7, 2020
+9
E
B
W
The ability to characterize the combined structural, functional, and thermal properties of biophysically dynamic samples is needed to address critical questions related to tissue structure, physiological dynamics, and disease progression. Towards this, we have developed an imaging platform that enables multiple nonlinear imaging modalities to be combined with thermal imaging on a common sample. Here we demonstrate label-free multimodal imaging of live cells, excised tissues, and live rodent brain models. While potential applications of this technology are wide-ranging, we expect it to be especially useful in addressing biomedical research questions aimed at the biomolecular and biophysical properties of tissue and their physiology.
1

Visualizing the Role of Lipid Dynamics during Infrared Neural Stimulation with Hyperspectral Stimulated Raman Scattering Microscopy

Wilson Adams et al.May 25, 2021
+6
A
R
W
Abstract Infrared neural stimulation, or INS, is a method of using pulsed infrared light to yield label-free neural stimulation with broad experimental and translational utility. Despite its robust demonstration, the mechanistic and biophysical underpinnings of INS have been the subject of debate for more than a decade. The role of lipid membrane thermodynamics appears to play an important role in how fast IR-mediated heating nonspecifically drives action potential generation. Direct observation of lipid membrane dynamics during INS remains to be shown in a live neural model system. To directly test the involvement of lipid dynamics in INS, we used hyperspectral stimulated Raman scattering (hsSRS) microscopy to study biochemical signatures of high-speed vibrational dynamics underlying INS in a live neural cell culture model. Findings suggest that lipid bilayer structural changes are occurring during INS in vitro in NG108-15 neuroglioma cells. Lipid-specific signatures of cell SRS spectra were found to vary with stimulation energy and radiant exposure. Spectroscopic observations were verified against high-speed ratiometric fluorescence imaging of a conventional lipophilic membrane structure reporter, di-4-ANNEPS. Overall, the presented data supports the hypothesis that INS causes changes in the lipid membrane of neural cells by changing lipid membrane packing order – which coincides with likelihood of cell stimulation. Furthermore, this work highlights the potential of hsSRS as a method to study biophysical and biochemical dynamics safely in live cells.