DV
Divya Venkatesh
Author with expertise in Influenza Virus Research and Epidemiology
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
4
(25% Open Access)
Cited by:
4
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
5

Antigenic characterization and pandemic risk assessment of North American H1 influenza A viruses circulating in swine

Divya Venkatesh et al.May 5, 2022
Abstract The first pandemic of the 21st century was caused by an H1N1 influenza A virus (IAV) introduced from pigs into humans, highlighting the importance of swine as reservoirs for pandemic viruses. Two major lineages of swine H1 circulate in North America: the 1A classical swine lineage (including the 2009 pandemic H1N1) and 1B human seasonal-like lineage. Here, we investigated the evolution of these H1 IAV lineages in North American swine and their potential pandemic risk. We assessed the antigenic distance between the HA of representative swine H1 and human seasonal vaccine strains (1978-2015) in hemagglutination inhibition (HI) assays using a panel of monovalent anti-sera raised in pigs. Antigenic cross-reactivity varied by strain but was associated with genetic distance. Generally, swine 1A lineage viruses that seeded the 2009 H1 pandemic were antigenically most similar to H1 pandemic vaccine strains, with the exception of viruses in the genetic clade 1A.1.1.3 that had a two-amino acid deletion mutation near the receptor-binding site, dramatically reducing antibody recognition. The swine 1B lineage strains, which arose from previously circulating (pre-2009 pandemic) human seasonal viruses, were more antigenically similar to pre-2009 human seasonal H1 vaccine viruses than post-2009 strains. Human population immunity was measured by cross-reactivity in HI assays to representative swine H1 strains. There was a broad range of titers against each swine strain that was not associated with age, sex, or location. However, there was almost no cross-reactivity in human sera to the 1A.1.1.3 and 1B.2.1 genetic clades of swine viruses, and the 1A.1.1.3 and 1B.2.1 clades were also the most antigenically distant from all human vaccine strains. Our data demonstrate that antigenic distances of representative swine strains from human vaccine strains represent a rational assessment of swine IAV for zoonotic risk research and pandemic preparedness prioritization. Importance Human H1 influenza A viruses (IAV) spread to pigs in North America, resulting in sustained circulation of two major groups of H1 viruses in swine. We quantified the genetic diversity of H1 in swine and measured antigenic phenotypes. We demonstrated that swine H1 lineages were significantly different from human vaccine strains and this antigenic dissimilarity increased over time as the viruses evolved in swine. Pandemic preparedness vaccine strains for human vaccines also demonstrated a loss in similarity with contemporary swine strains. Human sera revealed a range of responses to swine IAV, including two groups of viruses with little to no immunity. Surveillance and risk assessment of IAV diversity in pig populations are essential to detect strains with reduced immunity in humans, providing critical information for pandemic preparedness.
5
Citation4
0
Save
0

Detection of H3N8 influenza A virus with multiple mammalian-adaptive mutations in a rescued Grey seal (Halichoerus grypus) pup

Divya Venkatesh et al.Aug 28, 2019
Avian Influenza A Viruses (IAV) in different species of seals display a spectrum of pathogenicity, from subclinical infection to mass mortality events. Here we present an investigation of avian IAV infection in a 3-4 month old Grey seal ( Halichoerus grypus ) pup, rescued from St Michael’s Mount, Cornwall in 2017. The pup underwent medical treatment but died after two weeks; post-mortem examination and histology indicated sepsis as the cause of death. IAV NP antigen was detected by immunohistochemistry in the nasal mucosa, and sensitive real-time reverse transcription polymerase chain reaction assays detected trace amounts of viral RNA within the lower respiratory tract, suggesting that the infection may have been cleared naturally. IAV prevalence among Grey seals may therefore be underestimated. Moreover, contact with humans during the rescue raised concerns about potential zoonotic risk. Nucleotide sequencing revealed the virus to be of subtype H3N8. Combining a GISAID database BLAST search and time-scaled phylogenetic analyses, we inferred that the seal virus originated from an unsampled, locally circulating (in Northern Europe) viruses, likely from wild Anseriformes. From examining the protein alignments, we found several residue changes in the seal virus that did not occur in the bird viruses, including D701N in the PB2 segment, a rare mutation, and a hallmark of mammalian adaptation of bird viruses. IAVs of H3N8 subtype have been noted for their particular ability to cross the species barrier and cause productive infections, including historical records suggesting that they may have caused the 1889 pandemic. Therefore, infections such as the one we report here may be of interest to pandemic surveillance and risk and may help us better understand the determinants and drivers of mammalian adaptation in influenza.
0

Avian influenza viruses in wild birds: virus evolution in a multi-host ecosystem

Divya Venkatesh et al.Mar 17, 2018
Wild ducks and gulls are the major reservoirs for avian influenza A viruses (AIVs). The mechanisms that drive AIV evolution are complex at sites where various duck and gull species from multiple flyways breed, winter or stage. The Republic of Georgia is located at the intersection of three migratory flyways: Central Asian Flyway, East Asian/East African Flyway and Black Sea/Mediterranean Flyway. For six consecutive years (2010-2016), we collected AIV samples from various duck and gull species that breed, migrate and overwinter in Georgia. We found substantial subtype diversity of viruses that varied in prevalence from year to year. Low pathogenic (LP)AIV subtypes included H1N1, H2N3, H2N5, H2N7, H3N8, H4N2, H6N2, H7N3, H7N7, H9N1, H9N3, H10N4, H10N7, H11N1, H13N2, H13N6, H13N8, H16N3, plus two H5N5 and H5N8 highly pathogenic (HP)AIVs belonging to clade 2.3.4.4. Whole genome phylogenetic trees showed significant host species lineage restriction for nearly all gene segments and significant differences for LPAIVs among different host species in observed reassortment rates, as defined by quantification of phylogenetic incongruence, and in nucleotide diversity. Hemagglutinin clade 2.3.4.4 H5N8 viruses, circulated in Eurasia during 2014-2015 did not reassort, but analysis after its subsequent dissemination during 2016-2017 revealed reassortment in all gene segments except NP and NS. Some virus lineages appeared to be unrelated to AIVs in wild bird populations in other regions with maintenance of local AIV viruses in Georgia, whereas other lineages showed considerable genetic inter-relationship with viruses circulating in other parts of Eurasia and Africa, despite relative under-sampling in the area.
0

Regional transmission and reassortment of 2.3.4.4b highly pathogenic avian influenza (HPAI) viruses in Bulgarian poultry 2017/18

Divya Venkatesh et al.Apr 14, 2020
Between 2017 and 2018, several farms across Bulgaria reported outbreaks of H5 HPAI viruses. In this study we use genomic and traditional epidemiological analyses to trace the origin and subsequent spread of these outbreaks within Bulgaria. Both methods indicate two separate incursions, one restricted to the North-Eastern region of Dobrich, and another largely restricted to Central and Eastern Bulgaria including places such as Plovdiv, Sliven and Stara Zagora, as well as one virus from the Western region of Vidin. Both outbreaks likely originate from different European 2.3.4.4b virus ancestors circulating in 2017. The viruses were likely introduced by wild birds or poultry trade links in 2017 and have continued to circulate, but due to lack of contemporaneous sampling and sequences from wild bird viruses in Bulgaria, the precise route and timing of introduction cannot be determined. Analysis of whole genomes indicates complete lack of reassortment in all segments but the MP, which presents as multiple smaller clusters associated with different European 2.3.4.4b viruses. Ancestral reconstruction of host states of the HA gene of viruses involved in the outbreaks suggests that transmission is driven by domestic ducks into galliform poultry. Thus, according to present evidence we suggest that surveillance of domestic ducks as epidemiologically relevant species for subclinical infection. Monitoring spread due to movement between farms within regions and links to poultry production systems in European countries can help to predict and prevent future outbreaks.### Competing Interest StatementThe authors have declared no competing interest.