PC
Paige Cloonan
Author with expertise in Diagnosis and Management of Hypertrophic Cardiomyopathy
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
2
(0% Open Access)
Cited by:
5
h-index:
6
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
5

Mechanical dysfunction induced by a hypertrophic cardiomyopathy mutation is the primary driver of cellular adaptation

Sarah Clippinger et al.May 5, 2020
+5
W
P
S
Abstract Familial hypertrophic cardiomyopathy (HCM), a leading cause of sudden cardiac death, is primarily caused by mutations in sarcomeric proteins. The pathogenesis of HCM is complex, with functional changes that span scales from molecules to tissues. This makes it challenging to deconvolve the biophysical molecular defect that drives the disease pathogenesis from downstream changes in cellular function. Here, we examined a HCM mutation in troponin T, R92Q. We demonstrate that the primary molecular insult driving the disease pathogenesis is mutation-induced alterations in tropomyosin positioning, which causes increased molecular and cellular force generation during calcium-based activation. We demonstrate computationally that these increases in force are direct consequences of the initial molecular insult. This altered cellular contractility causes downstream alterations in gene expression, calcium handling, and electrophysiology. Taken together, our results demonstrate that molecularly driven changes in mechanical tension drive the early disease pathogenesis, leading to activation of adaptive mechanobiological signaling pathways.
5
Citation5
0
Save
0

Disrupted mechanobiology links the molecular and cellular phenotypes in familial dilated cardiomyopathy

Sarah Clippinger et al.Feb 21, 2019
+3
P
L
S
Familial dilated cardiomyopathy (DCM) is a leading cause of sudden cardiac death and a major indicator for heart transplant. The disease is frequently caused by mutations of sarcomeric proteins; however, it is not well understood how these molecular mutations lead to alterations in cellular organization and contractility. To address this critical gap in our knowledge, we studied the molecular and cellular consequences of a DCM mutation in troponin-T, ΔK210. We determined the molecular mechanism of ΔK210 and used computational modeling to predict that the mutation should reduce the force per sarcomere. In mutant cardiomyocytes, we found that ΔK210 not only reduces contractility, but also causes cellular hypertrophy and impairs cardiomyocytes ability to adapt to changes in substrate stiffness (e.g., heart tissue fibrosis that occurs with aging and disease). These results link the molecular and cellular phenotypes and implicate alterations in mechanosensing as an important factor in the development of DCM.