CR
Clifton Ricana
Author with expertise in Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
8
h-index:
7
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
7

Optimized pseudotyping conditions for the SARS-COV2 Spike glycoprotein

Marc Johnson et al.May 29, 2020
+6
R
T
M
Abstract The SARS-COV2 Spike glycoprotein is solely responsible for binding to the host cell receptor and facilitating fusion between the viral and host membranes. The ability to generate viral particles pseudotyped with SARS-COV2 Spike is useful for many types of studies, such as characterization of neutralizing antibodies or development of fusion-inhibiting small molecules. Here we characterized the use of a codon-optimized SARS-COV2 Spike glycoprotein for the generation of pseudotyped HIV-1, MLV, and VSV particles. The full-length Spike protein functioned inefficiently with all three systems but was enhanced over 10-fold by deleting the last 19 amino acids of the cytoplasmic tail of Spike. Infection of 293FT target cells was only possible if the cells were engineered to stably express the human ACE-2 receptor, but stably introducing an additional copy of this receptor did not further enhance susceptibility. Stable introduction of the Spike activating protease TMPRSS2 further enhanced susceptibility to infection by 5-10 fold. Substitution of the signal peptide of the Spike protein with an optimal signal peptide did not enhance or reduce infectious particle production. However, modification of a single amino acid in the furin cleavage site of Spike (R682Q) enhanced infectious particle production another 10-fold. With all enhancing elements combined, the titer of pseudotyped particles reached almost 10 6 infectious particles/ml. Finally, HIV-1 particles pseudotyped with SARS-COV2 Spike was successfully used to detect neutralizing antibodies in plasma from COVID-19 patients, but not plasma from uninfected individuals. Importance When working with pathogenic viruses, it is useful to have rapid quantitative tests for viral infectivity that can be performed without strict biocontainment restrictions. A common way of accomplishing this is to generate viral pseudoparticles that contain the surface glycoprotein from the pathogenic virus incorporated into a replication-defective viral particle that contains a sensitive reporter system. These pseudoparticles enter cells using the glycoprotein from the pathogenic virus leading to a readout for infection. Conditions that block entry of the pathogenic virus, such as neutralizing antibodies, will also block entry of the viral pseudoparticles. However, viral glycoproteins often are not readily suited for generating pseudoparticles. Here we describe a series of modifications that result in the production of relatively high titer SARS-COV2 pseudoparticles that are suitable for detection of neutralizing antibodies from COVID-19 patients.
7
Citation7
0
Save
5

Structural insights into HIV-1 polyanion-dependent capsid lattice formation revealed by single particle cryo-EM

Highland CMH et al.Dec 2, 2022
+2
C
A
H
Abstract The HIV-1 capsid houses the viral genome and interacts extensively with host cell proteins throughout the viral life cycle. It is composed of capsid protein (CA), which assembles into a conical fullerene lattice composed of roughly 200 CA hexamers and 12 CA pentamers. Previous structural analyses of individual CA hexamers and pentamers have provided valuable insight into capsid structure and function, but high-resolution information about these assemblies in the broader context of the capsid lattice is lacking. In this study, we combined cryo-electron tomography and single particle analysis cryo-electron microscopy to determine high-resolution structures of continuous regions of the capsid lattice containing both hexamers and pentamers. We also developed a new method of in vitro lattice assembly that enabled us to directly study the lattice under a wider range of conditions than has previously been possible. Using this approach, we identified a critical role for inositol hexakisphosphate (IP6) in pentamer formation and determined the structure of the CA lattice bound to the capsid-targeting antiretroviral drug GS-6207 (Lenacapvir). Our work reveals new structural details of the mature HIV-1 CA lattice and establishes the combination of lattice templating and single particle analysis as a robust strategy for studying retroviral capsid structure and capsid interactions with host proteins and antiviral compounds. Significance statement The mature HIV-1 capsid is composed of the capsid (CA) protein arranged in a conical lattice of hexamers and pentamers. Numerous structures of individual CA hexamers and pentamers alone have been published, but the molecular details of these assemblies in a more global, lattice-wide context are lacking. Here, we present high-resolution cryo-electron microscopy structures of continuous regions of the capsid lattice containing both hexamers and pentamers. We also describe key differences in the assembly and structures of these oligomers that have important implications for understanding retroviral maturation and for ongoing efforts to pharmacologically target the HIV-1 capsid.
5
Citation1
0
Save
0

Inositol hexakisphosphate (IP6) and inositol pentakisphosphate (IP5) are required for viral particle release of retroviruses belonging to the primate lentivirus genus

Clifton Ricana et al.May 21, 2020
M
R
T
C
Abstract Inositol hexakisphosphate (IP6) potently stimulates HIV-1 particle assembly in vitro and infectious particle production in vivo . However, knockout cells lacking the enzyme inositol-pentakisphosphate 2-kinase (IPPK-KO), which adds the final phosphate to inositol pentakisphosphate (IP5) to produce IP6, were still able to produce infectious HIV-1 particles at a greatly reduced rate. HIV-1 in vitro assembly can also be stimulated to a lesser extent with IP5, but it was not known if IP5 could also function in promoting assembly in vivo . IPPK-KO cells expressed no detectable IP6 but elevated IP5 levels and displayed a 20-100-fold reduction in infectious particle production, correlating with lost virus release. Transient transfection of an IPPK expression vector stimulated infectious particle production and release in IPPK-KOs but not in wildtype cells. Several attempts to make an IP6 and IP5 deficient stable cell line were not successful, but transient expression of multiple inositol polyphosphate phosphatase-1 (MINPP1) into IPPK-KOs resulted in the near ablation of IP6 and IP5. Under these conditions, HIV-1 infectious particle production and virus release were essentially abolished (1000-fold reduction). However, other retroviruses including a Gammaretrovirus, a Betaretrovirus, and two non-primate Lentiviruses displayed only a modest (3-fold) reduction in infectious particle production from IPPK-KOs and were not significantly altered by expression of IPPK or MINPP1. The only other retrovirus found that showed a clear IP6/IP5 dependence was the primate (macaque) Lentivirus Simian Immunodeficiency Virus (SIV-mac), which displayed similar sensitivity to IP6/IP5 levels as HIV-1. Finally, we found that loss of IP6/IP5 in viral target cells had no effect on permissiveness to HIV-1 infection. However, because it was not possible to generate viral particles devoid of IP6 and IP5, we were not able to determine if IP6 or IP5 derived from the virus producer cells is required at additional steps beyond assembly. Author Summary Inositol hexakisphosphate (IP6) is a co-factor required for efficient production of infectious HIV-1 particles. The HIV-1 structural protein Gag forms a hexagonal lattice structure. The negatively charged IP6 sits in the middle of the hexamer and stabilizes a ring of positively charged lysines. Previously described results show that depletion of IP6 reduces, but does not eliminate, infectious virus production. This depletion was achieved through knock-out of inositol-pentakisphosphate 2-kinase (IPPK-KO), the enzyme responsible for adding the sixth and final phosphate to the molecule. Whether IP6 is required, another inositol phosphate can substitute, or IP6 is simply acting as an enhancer for virus production was unknown. Here, we show that loss of IP6 and inositol pentakisphosphate (IP5) abolishes infectious HIV-1 production from cells. We do this through a cell-based system using transiently expressed proteins to restore or deplete IP6 and IP5 in the IPPK-KO cell line. We further show that the IP6 and IP5 requirement is a feature of primate lentiviruses, but not all retroviruses, and that IP6 and IP5 is required in the producer but not the target cell for HIV-1 infection.
20

Structure of the mature Rous sarcoma virus lattice reveals a role for IP6 in the formation of the capsid hexamer

Martin Obr et al.Dec 3, 2020
+7
N
C
M
Abstract Inositol hexakisphosphate (IP6) is an assembly cofactor for HIV-1. We report here that IP6 is also used for assembly of Rous sarcoma virus (RSV), a retrovirus from a different genus. IP6 was ∼100-fold more potent at promoting RSV mature CA assembly than observed for HIV-1 and removal of IP6 in vivo reduced infectivity by 100-fold. By cryo-electron tomography and subtomogram averaging, mature virus-like particles (VLPs) showed an IP6-like density in the CA hexamer, coordinated by rings of six lysines and six arginines. Phosphate and IP6 had opposing effects on CA in vitro assembly, inducing formation of T=1 icosahedrons and tubes, respectively, implying that phosphate promotes pentamer and IP6 hexamer formation. Subtomogram averaging and classification optimized for analysis of pleomorphic retrovirus particles revealed that the heterogeneity of mature RSV CA polyhedrons results from an unexpected, intrinsic CA hexamer flexibility. In contrast, the CA pentamer forms rigid units organizing the local architecture. These different features of hexamers and pentamers determine the structural mechanism to form CA polyhedrons of variable shape in mature RSV particles.
1

An infectious Rous Sarcoma Virus Gag mutant that is defective in nuclear cycling

Clifton Ricana et al.Apr 17, 2021
M
C
Abstract During retroviral replication, unspliced viral genomic RNA (gRNA) must escape the nucleus for translation into viral proteins and packaging into virions. “Complex” retroviruses such as Human Immunodeficiency Virus (HIV) use cis-acting elements on the unspliced gRNA in conjunction with trans-acting viral proteins to facilitate this escape. “Simple” retroviruses such as Mason-Pfizer Monkey Virus (MPMV) and Murine Leukemia Virus (MLV) exclusively use cis-acting elements on the gRNA in conjunction with host nuclear export proteins for nuclear escape. Uniquely, the simple retrovirus Rous Sarcoma Virus (RSV) has a Gag structural protein that cycles through the nucleus prior to plasma membrane binding. This trafficking has been implicated in facilitating gRNA nuclear export and is thought to be a required mechanism. Previously described mutants that abolish nuclear cycling displayed enhanced plasma membrane binding, enhanced virion release, and a significant loss in genome incorporation resulting in loss of infectivity. Here, we describe a nuclear cycling deficient RSV Gag mutant that has similar plasma membrane binding and genome incorporation to WT virus and surprisingly, is replication competent albeit with a slower rate of spread compared to WT. This mutant suggests that RSV Gag nuclear cycling is not strictly required for RSV replication. Importance While mechanisms for retroviral Gag assembly at the plasma membrane are beginning to be characterized, characterization of intermediate trafficking locales remain elusive. This is in part due to the difficulty of tracking individual proteins from translation to plasma membrane binding. RSV Gag nuclear cycling is a unique phenotype that may provide comparative insight to viral trafficking evolution and may present a model intermediate to cis- and trans-acting mechanisms for gRNA export.