AW
Anna Wilsdon
Author with expertise in Molecular Mechanisms of Cardiac Development and Regeneration
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
388
h-index:
7
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing

Alejandro Sifrim et al.Aug 1, 2016
Matthew Hurles and colleagues report exome sequencing of 1,891 individuals with syndromic or nonsyndromic congenital heart defects (CHD). They found that nonsyndromic CHD patients were enriched for protein-truncating variants in CHD-associated genes inherited from unaffected parents and identified three new syndromic CHD disorders caused by de novo mutations. Congenital heart defects (CHDs) have a neonatal incidence of 0.8–1% (refs. 1,2). Despite abundant examples of monogenic CHD in humans and mice, CHD has a low absolute sibling recurrence risk (∼2.7%)3, suggesting a considerable role for de novo mutations (DNMs) and/or incomplete penetrance4,5. De novo protein-truncating variants (PTVs) have been shown to be enriched among the 10% of 'syndromic' patients with extra-cardiac manifestations6,7. We exome sequenced 1,891 probands, including both syndromic CHD (S-CHD, n = 610) and nonsyndromic CHD (NS-CHD, n = 1,281). In S-CHD, we confirmed a significant enrichment of de novo PTVs but not inherited PTVs in known CHD-associated genes, consistent with recent findings8. Conversely, in NS-CHD we observed significant enrichment of PTVs inherited from unaffected parents in CHD-associated genes. We identified three genome-wide significant S-CHD disorders caused by DNMs in CHD4, CDK13 and PRKD1. Our study finds evidence for distinct genetic architectures underlying the low sibling recurrence risk in S-CHD and NS-CHD.
0
Citation384
0
Save
8

Integrative analysis of genomic variants reveals new associations of candidate haploinsufficient genes with congenital heart disease

Enrique Audain et al.Jun 25, 2020
Abstract Congenital Heart Disease (CHD) affects approximately 7-9 children per 1000 live births. Numerous genetic studies have established a role for rare genomic variants at the copy number variation (CNV) and single nucleotide variant level. In particular, the role of de novo mutations (DNM) has been highlighted in syndromic and non-syndromic CHD. To identify novel haploinsufficient CHD disease genes we performed an integrative analysis of CNVs and DNMs identified in probands with CHD including cases with sporadic thoracic aortic aneurysm (TAA). We assembled CNV data from 7,958 cases and 14,082 controls and performed a gene-wise analysis of the burden of rare genomic deletions in cases versus controls. In addition, we performed mutation rate testing for DNMs identified in 2,489 parent-offspring trios. Our combined analysis revealed 21 genes which were significantly affected by rare genomic deletions and/or constrained non-synonymous de novo mutations in probands. Fourteen of these genes have previously been associated with CHD while the remaining genes ( FEZ1, MYO16, ARID1B, NALCN, WAC, KDM5B and WHSC1 ) have only been associated in singletons and small cases series, or show new associations with CHD. In addition, a systems level analysis revealed shared contribution of CNV deletions and DNMs in CHD probands, affecting protein-protein interaction networks involved in Notch signaling pathway, heart morphogenesis, DNA repair and cilia/centrosome function. Taken together, this approach highlights the importance of re-analyzing existing datasets to strengthen disease association and identify novel disease genes.
8
Citation4
0
Save
0

Systems genetics analysis identify calcium signalling defects as novel cause of congenital heart disease

Jose Izarzugaza et al.Dec 12, 2019
Background: Congenital heart disease (CHD) occurs in almost 1% of newborn children and is considered a multifactorial disorder. CHD may segregate in families due to significant contribution of genetic factors in the disease aetiology. The aim of the study was to identify pathophysiological mechanisms in families segregating CHD. Methods: We used whole exome sequencing to identify rare genetic variants in ninety consenting participants from 32 Danish families with recurrent CHD. We applied a systems biology approach to identify developmental mechanisms influenced by accumulation of rare variants. We used an independent cohort of 714 CHD cases and 4922 controls for replication and performed functional investigations using zebrafish as in vivo model. Results: We identified 1,785 genes, in which rare alleles were shared between affected individuals within a family. These genes were enriched for known cardiac developmental genes and 218 of the genes were mutated in more than one family. Our analysis revealed a functional cluster, enriched for proteins with a known participation in calcium signalling. Replication confirmed increased mutation burden of calcium-signalling genes in CHD patients. Functional investigation of zebrafish orthologues of ITPR1, PLCB2 and ADCY2 verified a role in cardiac development and suggests a combinatorial effect of inactivation of these genes. Conclusions: The study identifies abnormal calcium signalling as a novel pathophysiological mechanism in human CHD and confirms the complex genetic architecture underlying CHD.