A mouse model of liver damage has identified a population of Lrg5+ liver stem cells that can generate hepatoctyes and bile ducts in vivo. Hans Clevers and colleagues have identified a quiescent population of adult liver stem cells that can be 'woken up' by damage. In mice subject to liver damage, small cells expressing the Wnt target gene Lgr5 accumulate near the bile ducts. One of these cells was used to grow large numbers of bipotent stem cells in vitro. The stem cells were converted to functional hepatocytes in vitro, and when liver organoids were transplanted into a mouse model of tyrosinemia type I liver disease, islands of apparently normal hepatocytes appeared in the liver. Whether these hepatocytes are fully functional is not yet known, but the results are promising for regenerative approaches in the liver. The Wnt target gene Lgr5 (leucine-rich-repeat-containing G-protein-coupled receptor 5) marks actively dividing stem cells in Wnt-driven, self-renewing tissues such as small intestine and colon1, stomach2 and hair follicles3. A three-dimensional culture system allows long-term clonal expansion of single Lgr5+ stem cells into transplantable organoids (budding cysts) that retain many characteristics of the original epithelial architecture2,4,5. A crucial component of the culture medium is the Wnt agonist RSPO16, the recently discovered ligand of LGR57,8. Here we show that Lgr5-lacZ is not expressed in healthy adult liver, however, small Lgr5-LacZ+ cells appear near bile ducts upon damage, coinciding with robust activation of Wnt signalling. As shown by mouse lineage tracing using a new Lgr5-IRES-creERT2 knock-in allele, damage-induced Lgr5+ cells generate hepatocytes and bile ducts in vivo. Single Lgr5+ cells from damaged mouse liver can be clonally expanded as organoids in Rspo1-based culture medium over several months. Such clonal organoids can be induced to differentiate in vitro and to generate functional hepatocytes upon transplantation into Fah−/− mice. These findings indicate that previous observations concerning Lgr5+ stem cells in actively self-renewing tissues can also be extended to damage-induced stem cells in a tissue with a low rate of spontaneous proliferation.