PR
Peter Rosenthal
Author with expertise in Lipid Rafts and Membrane Dynamics
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(71% Open Access)
Cited by:
4,200
h-index:
29
/
i10-index:
52
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion

D.J. Benton et al.Sep 17, 2020
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is initiated by virus binding to the ACE2 cell-surface receptors1–4, followed by fusion of the virus and cell membranes to release the virus genome into the cell. Both receptor binding and membrane fusion activities are mediated by the virus spike glycoprotein5–7. As with other class-I membrane-fusion proteins, the spike protein is post-translationally cleaved, in this case by furin, into the S1 and S2 components that remain associated after cleavage8–10. Fusion activation after receptor binding is proposed to involve the exposure of a second proteolytic site (S2′), cleavage of which is required for the release of the fusion peptide11,12. Here we analyse the binding of ACE2 to the furin-cleaved form of the SARS-CoV-2 spike protein using cryo-electron microscopy. We classify ten different molecular species, including the unbound, closed spike trimer, the fully open ACE2-bound trimer and dissociated monomeric S1 bound to ACE2. The ten structures describe ACE2-binding events that destabilize the spike trimer, progressively opening up, and out, the individual S1 components. The opening process reduces S1 contacts and unshields the trimeric S2 core, priming the protein for fusion activation and dissociation of ACE2-bound S1 monomers. The structures also reveal refolding of an S1 subdomain after ACE2 binding that disrupts interactions with S2, which involves Asp61413–15 and leads to the destabilization of the structure of S2 proximal to the secondary (S2′) cleavage site. Cryo-electron microscopy structures of consecutive binding events of ACE2 in complex with the spike protein of SARS-CoV-2 reveal the mechanisms of receptor binding by the spike protein and activation for membrane fusion by the spike protein of SARS-CoV-2.
0

SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects

Antoni Wrobel et al.Jul 9, 2020
SARS-CoV-2 is thought to have emerged from bats, possibly via a secondary host. Here, we investigate the relationship of spike (S) glycoprotein from SARS-CoV-2 with the S protein of a closely related bat virus, RaTG13. We determined cryo-EM structures for RaTG13 S and for both furin-cleaved and uncleaved SARS-CoV-2 S; we compared these with recently reported structures for uncleaved SARS-CoV-2 S. We also biochemically characterized their relative stabilities and affinities for the SARS-CoV-2 receptor ACE2. Although the overall structures of human and bat virus S proteins are similar, there are key differences in their properties, including a more stable precleavage form of human S and about 1,000-fold tighter binding of SARS-CoV-2 to human receptor. These observations suggest that cleavage at the furin-cleavage site decreases the overall stability of SARS-CoV-2 S and facilitates the adoption of the open conformation that is required for S to bind to the ACE2 receptor. Cryo-EM and functional analyses of furin-cleaved spike from SARS-CoV-2 and the closely related spike from bat virus RaTG13 reveal differences in protein stability and binding to human receptor ACE2.
0
Citation549
0
Save
30

Outcomes of the 2019 EMDataResource model challenge: validation of cryo-EM models at near-atomic resolution

Catherine Lawson et al.Jun 15, 2020
Abstract This paper describes outcomes of the 2019 Cryo-EM Map-based Model Metrics Challenge sponsored by EMDataResource ( www.emdataresource.org ). The goals of this challenge were (1) to assess the quality of models that can be produced using current modeling software, (2) to check the reproducibility of modeling results from different software developers and users, and (3) compare the performance of current metrics used for evaluation of models. The focus was on near-atomic resolution maps with an innovative twist: three of four target maps formed a resolution series (1.8 to 3.1 Å) from the same specimen and imaging experiment. Tools developed in previous challenges were expanded for managing, visualizing and analyzing the 63 submitted coordinate models, and several novel metrics were introduced. The results permit specific recommendations to be made about validating near-atomic cryo-EM structures both in the context of individual laboratory experiments and holdings of structure data archives such as the Protein Data Bank. Our findings demonstrate the relatively high accuracy and reproducibility of cryo-EM models derived from these benchmark maps by 13 participating teams, representing both widely used and novel modeling approaches. We also evaluate the pros and cons of the commonly used metrics to assess model quality and recommend the adoption of multiple scoring parameters to provide full and objective annotation and assessment of the model, reflective of the observed density in the cryo-EM map.
30
Citation6
0
Save
16

High-resolution structures of malaria parasite actomyosin and actin filaments

Juha Vahokoski et al.Jul 2, 2020
Abstract Malaria is responsible for half a million deaths annually and poses a huge economic burden on the developing world. The mosquito-borne parasites ( Plasmodium spp.) that cause the disease depend upon an unconventional actomyosin motor for both gliding motility and host cell invasion. The motor system, often referred to as the glideosome complex, remains to be understood in molecular terms and is an attractive target for new drugs that might block the infection pathway. Here, we present the first high-resolution structure of the actomyosin motor complex from Plasmodium falciparum . Our structure includes the malaria parasite actin filament ( Pf Act1) complexed with the myosin motor ( Pf MyoA) and its two associated light-chains. The high-resolution core structure reveals the Pf Act1: Pf MyoA interface in atomic detail, while at lower-resolution, we visualize the Pf MyoA light-chain binding region, including the essential light chain ( Pf ELC) and the myosin tail interacting protein ( Pf MTIP). Finally, we report a bare Pf Act1 filament structure at an improved resolution, which gives new information about the nucleotide-binding site, including the orientation of the ATP/ADP sensor, Ser15, and the presence of a channel, which we propose as a possible phosphate exit path after ATP hydrolysis. Significance statement We present the first structure of the malaria parasite motor complex; actin 1 ( Pf Act1) and myosin A ( Pf MyoA) with its two light chains. We also report a high-resolution structure of filamentous Pf Act1 that reveals new atomic details of the ATPase site, including a channel, which may provide an exit route for phosphate and explain why phosphate release is faster in Pf Act1 compared to canonical actins. Pf Act1 goes through no conformational changes upon Pf MyoA binding. Our Pf MyoA structure also superimposes with a recent crystal structure of Pf MyoA alone, though there are small but important conformational changes at the interface. Our structures serve as an excellent starting point for drug design against malaria, which is one of the most devastating infectious diseases.
16
Citation4
0
Save
0

CDK1 controls CHMP7-dependent nuclear envelope reformation

Alberto Gatta et al.Apr 21, 2020
Abstract Through membrane sealing and disassembly of spindle microtubules, the Endosomal Sorting Complex Required for Transport-III (ESCRT-III) machinery has emerged as a key player in the regeneration of a sealed nuclear envelope (NE) during mitotic exit, and in the repair of this organelle during interphase rupture. ESCRT-III assembly at the NE occurs transiently during mitotic exit and is initiated when CHMP7, an ER-localised ESCRT-II/ESCRT-III hybrid protein, interacts with the Inner Nuclear Membrane (INM) protein LEM2. Whilst classical nucleocytoplasmic transport mechanisms have been proposed to separate LEM2 and CHMP7 during interphase, it is unclear how CHMP7 assembly is suppressed in mitosis when NE and ER identities are mixed. Here, we use live cell imaging and protein biochemistry to examine the biology of these proteins during mitotic exit. Firstly, we show that CHMP7 plays an important role in the dissolution of LEM2 clusters that form at the NE during M-exit. Secondly, we show that CDK1 phosphorylates CHMP7 upon mitotic entry at Ser3 and Ser441 and that this phosphorylation suppresses CHMP7’s interaction with LEM2, limiting its assembly during M-phase. We show that spatiotemporal differences in the dephosphorylation of CHMP7 license its assembly at the NE during telophase, but restrict its assembly on the ER at this time. Without CDK1 phosphorylation, CHMP7 undergoes inappropriate assembly in the peripheral ER during M-exit, capturing LEM2 and downstream ESCRT-III components. Lastly, we establish that a microtubule network is dispensable for ESCRT-III assembly at the reforming nuclear envelope. These data identify a key cell-cycle control programme allowing ESCRT-III-dependent nuclear regeneration.
0
Citation2
0
Save
Load More