JC
Jin Chai
Author with expertise in Genomic Studies and Association Analyses
Army Medical University, Southwest Hospital, National University Health System
+ 7 more
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
5
h-index:
19
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Trans-Ancestral Genomic Architecture of Glycaemic Traits

Ji Chen et al.May 30, 2024
+405
G
C
J
Abstract Glycaemic traits are used to diagnose and monitor type 2 diabetes, and cardiometabolic health. To date, most genetic studies of glycaemic traits have focused on individuals of European ancestry. Here, we aggregated genome-wide association studies in up to 281,416 individuals without diabetes (30% non-European ancestry) with fasting glucose, 2h-glucose post-challenge, glycated haemoglobin, and fasting insulin data. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P <5×10 -8 ), 80% with no significant evidence of between-ancestry heterogeneity. Analyses restricted to European ancestry individuals with equivalent sample size would have led to 24 fewer new loci. Compared to single-ancestry, equivalent sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase understanding of diabetes pathophysiology by use of trans-ancestry studies for improved power and resolution.
57

A multi-layer functional genomic analysis to understand noncoding genetic variation in lipids

Shweta Ramdas et al.Oct 24, 2023
+532
S
J
S
Abstract A major challenge of genome-wide association studies (GWAS) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations, and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels, and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. Two prioritized genes, CREBRF and RRBP1 , show convergent evidence across functional datasets supporting their roles in lipid biology.
10

RAPTOR: A Five-Safes approach to a secure, cloud native and serverless genomics data repository

Chih Shih et al.Oct 24, 2023
+35
A
J
C
Abstract Genomic researchers are increasingly utilizing commercial cloud platforms (CCPs) to manage their data and analytics needs. Commercial clouds allow researchers to grow their storage and analytics capacity on demand, keeping pace with expanding project data footprints and enabling researchers to avoid large capital expenditures while paying only for IT capacity consumed by their project. Cloud computing also allows researchers to overcome common network and storage bottlenecks encountered when combining or re-analysing large datasets. However, cloud computing presents a new set of challenges. Without adequate security controls, the risk of unauthorised access may be higher for data stored on the cloud. In addition, regulators are increasingly mandating data access patterns and specific security protocols on the storage and use of genomic data to safeguard rights of the study participants. While CCPs provide tools for security and regulatory compliance, utilising these tools to build the necessary controls required for cloud solutions is not trivial as such skill sets are not commonly found in a genomics lab. The Research Assets Provisioning and Tracking Online Repository (RAPTOR) by the Genome Institute of Singapore is a cloud native genomics data repository and analytics platform focusing on security and regulatory compliance. Using a “five-safes” framework (Safe Purpose, Safe People, Safe Settings, Safe Data and Safe Output), RAPTOR provides security and governance controls to data contributors and users leveraging cloud computing for sharing and analysis of large genomic datasets without the risk of security breaches or running afoul of regulations. RAPTOR can also enable data federation with other genomic data repositories using GA4GH community-defined standards, allowing researchers to boost the statistical power of their work and overcome geographic and ancestry limitations of data sets