SN
Shruti Nayak
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
4
h-index:
19
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
7

Proteomic Differences in the Hippocampus and Cortex of Epilepsy Brain Tissue

Geoffrey Pires et al.Jul 21, 2020
+9
E
D
G
Abstract Epilepsy is a common neurological disorder affecting over 70 million people worldwide, with a high rate of pharmaco-resistance, diverse comorbidities including progressive cognitive and behavioral disorders, and increased mortality from direct (e.g., Sudden Unexpected Death in Epilepsy [SUDEP], accidents, drowning) or indirect effects of seizures and therapies. Extensive research with animal models and human studies provides limited insights into the mechanisms underlying seizures and epileptogenesis, and these have not translated into significant reductions in pharmaco-resistance, morbidities or mortality. To help define changes in molecular signaling networks associated with epilepsy, we examined the proteome of brain samples from epilepsy and control cases. Label-free quantitative mass spectrometry (MS) was performed on the hippocampal CA1-3 region, frontal cortex, and dentate gyrus microdissected from epilepsy and control cases (n=14/group). Epilepsy cases had significant differences in the expression of 777 proteins in the hippocampal CA1-3 region, 296 proteins in the frontal cortex, and 49 proteins in the dentate gyrus in comparison to control cases. Network analysis showed that proteins involved in protein synthesis, mitochondrial function, G-protein signaling, and synaptic plasticity were particularly altered in epilepsy. While protein differences were most pronounced in the hippocampus, similar changes were observed in other brain regions indicating broad proteomic abnormalities in epilepsy. Among the most significantly altered proteins, G-protein Subunit Beta 1 (GNB1) was one of the most significantly decreased proteins in epilepsy in all regions studied, highlighting the importance of G-protein subunit signaling and G-protein–coupled receptors (GPCRs) in epilepsy. Our results provide insights into the molecular mechanisms underlying epilepsy, which may allow for novel targeted therapeutic strategies.
7
Citation4
0
Save
0

Identification of PIM1 substrates reveals a role for NDRG1 in prostate cancer cellular migration and invasion

Russell Ledet et al.Jan 22, 2020
+5
Y
S
R
PIM1 is an oncogenic serine/threonine kinase that promotes and maintains prostate tumorigenesis. To more fully understand the mechanism by which PIM1 promotes oncogenesis, we performed a chemical genetic screen to identify direct PIM1 substrates in prostate cancer cells. The PIM1 substrates we identified were involved in a variety of oncogenic processes, and included N-Myc Downstream-Regulated Gene 1 (NDRG1), which has reported roles in the suppression of cancer cell invasion and metastasis. NDRG1 is phosphorylated by PIM1 at serine 330 (pS330), and the level of NDRG1 pS330 is associated with high grade compared to low grade prostate tumors. While NDRG1 pS330 is largely cytoplasmic, total NDRG1 is both cytoplasmic and nuclear. Mechanistically, PIM1 phosphorylation of NDRG1 decreases its stability, reducing its interaction with AR, and thereby lowering expression of AR target genes. PIM1-dependent NDRG1 phosphorylation also reduces NDRG1s ability to suppress prostate cancer cell migration and invasion. Our study identifies a novel set of PIM1 substrates in prostate cancer cells using a direct, unbiased chemical genetic screen. It also provides key insights into the mechanisms by which PIM1-mediated phosphorylation of NDRG1 impairs its function, resulting in enhanced cell migration and invasion.
0

LINE-1 and the cell cycle: protein localization and functional dynamics

Paolo Mita et al.Jun 30, 2017
+9
X
A
P
LINE-1/L1 retrotransposon sequences comprise 17% of the human genome. Among the many classes of mobile genetic elements, L1 is the only autonomous retrotransposon that still drives human genomic plasticity today. Through its co-evolution with the human genome, L1 has intertwined itself with host cell biology to aid its proliferation. However, a clear understanding of L1's lifecycle and the processes involved in restricting its insertion and its intragenomic spreading remains elusive. Here we identify modes of L1 proteins' entrance into the nucleus, a necessary step for L1 proliferation. Using functional, biochemical, and imaging approaches, we also show a clear cell cycle bias for L1 retrotransposition that peaks during the S phase. Our observations provide a basis for novel interpretations about the nature of nuclear and cytoplasmic L1 ribonucleoproteins (RNPs) and the potential role of DNA replication in L1 retrotransposition.
3

Proteomic and Transcriptomic Analyses of the Hippocampus and Cortex in SUDEP and High-Risk SUDEP Cases

Dominique Leitner et al.Jul 28, 2020
+22
R
C
D
Abstract Sudden unexpected death in epilepsy (SUDEP) is the leading type of epilepsy-related death. Severely depressed brain activity in these cases may impair respiration, arousal, and protective reflexes, occurring as a prolonged postictal generalized EEG suppression (PGES) and resulting in a high-risk for SUDEP. In autopsy hippocampus and cortex, we observed no proteomic differences between SUDEP and epilepsy cases, contrasting our previously reported robust differences between epilepsy and controls. Transcriptomics in hippocampus and cortex from surgical epilepsy cases segregated by PGES identified 55 differentially expressed genes (37 protein-coding, 15 lncRNAs, three pending) in hippocampus. Overall, the SUDEP proteome and high-risk SUDEP transcriptome largely reflected other epilepsy cases in the brain regions analyzed, consistent with diverse epilepsy syndromes and comorbidities associated with SUDEP. Thus, studies with larger cohorts and different epilepsy syndromes, as well as additional anatomic regions may identify molecular mechanisms of SUDEP.