AH
Alison Hogan
Author with expertise in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
195
h-index:
15
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
4

SFPQ intron retention, reduced expression and aggregate formation in central nervous system tissue are pathological features of amyotrophic lateral sclerosis

Alison Hogan et al.Sep 23, 2020
Abstract Background Splicing factor proline and glutamine rich (SFPQ, also known as polypyrimidine tract-binding protein-associated-splicing factor, PSF) is a RNA-DNA binding protein with roles in key cellular pathways such as DNA transcription and repair, RNA processing and paraspeckle formation. Dysregulation of SFPQ is emerging as a common pathological feature of multiple neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Increased retention of SFPQ intron nine and nuclear loss of the protein have been linked to multiple genetic subtypes of ALS. Consequently, SFPQ dysregulation has been hypothesised to be a common pathological feature of this highly heterogeneous disease. Methods This study provides a comprehensive assessment of SFPQ pathology in large ALS patient cohorts. SFPQ gene expression and intron nine retention were examined in multiple neuroanatomical regions and blood from ALS patients and control individuals using RNA sequencing (RNA-Seq) and quantitative PCR (RT-qPCR). SFPQ protein levels were assessed by immunoblotting of patient and control motor cortex and SFPQ expression pattern was examined by immunofluorescent staining of patient and control spinal cord sections. Finally, whole-genome sequencing data from a large cohort of sporadic ALS patients was analysed for genetic variation in SFPQ . Results SFPQ intron nine retention was significantly increased in ALS patient motor cortex. Total SFPQ mRNA expression was significantly downregulated in ALS patient motor cortex but not ALS patient blood, indicating tissue specific SFPQ dysregulation. At the protein level, nuclear expression of SFPQ in both control and patient spinal motor neurons was highly variable and nuclear depletion of SFPQ was not a consistent feature in our ALS cohort. However, we did observe SFPQ-positive cytoplasmic ubiquitinated protein aggregates in ALS spinal motor neurons. In addition, our genetic screen of ALS patients identified two novel, and two rare sequence variants in SFPQ not previously reported in ALS. Conclusions This study shows that dysregulation of SFPQ is a feature of ALS patient central nervous system tissue. These findings confirm SFPQ pathology as a feature of ALS and indicate that investigations into the functional consequences of this pathology will provide insight into the biology of ALS.
4
Citation4
0
Save
9

The post-translational modification SUMO affects TDP-43 phase separation, compartmentalization, and aggregation in a zebrafish model

Cindy Maurel et al.Aug 14, 2022
SUMMARY TDP-43 is a nuclear RNA-binding protein that can undergo liquid-liquid phase separation (LLPS) and forms pathological insoluble aggregates in frontotemporal dementia and amyotrophic lateral sclerosis (ALS). Perturbations of TDP-43 function are linked to mislocalization and neurodegeneration. By studying TDP-43 in vivo , we confirmed for the first time that TDP-43 undergoes LLPS and forms biomolecular condensates in spinal motor neurons (MNs). Importantly, we discovered that interfering with the K136 SUMOylation site of TDP-43 altered its phase separation behavior, reducing cytoplasmic mislocalization and aggregation. Introduction of the ALS-linked mutation G294V did not alter these LLPS characteristics, indicating that posttranslational modifications such as lysine-specific alterations can modulate TDP-43 pathogenesis through regulating phase separation. Altogether, our in vivo characterization of TDP-43 confirms the formation of dynamic nuclear TDP-43 condensates in zebrafish spinal neurons and establishes a critical platform to validate the molecular grammar of phase separation that underpins TDP-43 aggregation in ALS and other proteinopathies.
9
Citation2
0
Save
0

In VivoValidation of Bimolecular Fluorescence Complementation (BiFC) to Investigate Aggregate Formation in Amyotrophic Lateral Sclerosis (ALS)

Emily Don et al.Oct 9, 2020
Abstract Amyotrophic lateral sclerosis (ALS) is a form of motor neuron disease (MND) that is characterized by the progressive loss of motor neurons within the spinal cord, brainstem and motor cortex. Although ALS clinically manifests as a heterogeneous disease, with varying disease onset and survival, a unifying feature is the presence of ubiquitinated cytoplasmic protein inclusion aggregates containing TDP-43. However, the precise mechanisms linking protein inclusions and aggregation to neuronal loss are currently poorly understood. Bimolecular Fluorescence Complementation (BiFC) takes advantage the association of fluorophore fragments (non-fluorescent on their own) that are attached to an aggregation prone protein of interest. Interaction of the proteins of interest allows for the fluorescent reporter protein to fold into its native state and emit a fluorescent signal. Here, we combined the power of BiFC with the advantages of the zebrafish system to validate, optimize and visualize of the formation of ALS-linked aggregates in real time in a vertebrate model. We further provide in vivo validation of the selectivity of this technique and demonstrate reduced spontaneous self-assembly of the non-fluorescent fragments in vivo by introducing a fluorophore mutation. Additionally, we report preliminary findings on the dynamic aggregation of the ALS-linked hallmark proteins Fus and TDP-43 in their corresponding nuclear and cytoplasmic compartments using BiFC. Overall, our data demonstrates the suitability of this BiFC approach to study and characterize ALS-linked aggregate formation in vivo . Importantly, the same principle can be applied in the context of other neurodegenerative diseases and has therefore critical implications to advance our understanding of pathologies that underlie aberrant protein aggregation.
1

Flow cytometry allows rapid detection of protein aggregates in cell culture and zebrafish models of spinocerebellar ataxia-3

Katherine Robinson et al.Mar 10, 2021
Abstract Spinocerebellar ataxia-3 (SCA3, also known as Machado Joseph Disease), is a neurodegenerative disease caused by inheritance of a ATXN3 gene containing a CAG repeat expansion, resulting in presence of a polyglutamine (polyQ) repeat expansion within the encoded human ataxin-3 protein. SCA3 is characterized by the formation of ataxin-3 protein aggregates within neurons, neurodegeneration, and impaired movement. In this study we have identified protein aggregates in both neuronal-like (SHSY5Y) cells and in vivo (transgenic zebrafish) models expressing human ataxin-3 protein containing polyQ expansion. We have adapted a flow cytometric methodology, allowing rapid quantification of detergent insoluble forms of ataxin-3 fused to a green fluorescent protein. Flow cytometric analysis revealed an increased number of detergent-insoluble ataxin-3 particles in cells and zebrafish expressing polyQ expanded ataxin-3 when compared to cells and zebrafish expressing wildtype human ataxin-3. Interestingly, a protein aggregation phenotype could be detected as early as two days of age in transgenic zebrafish, prior to the onset of a detectable movement impairment at 6 days of age, suggesting protein aggregation may be an early disease phenotype in SCA3. Further, treatment of SCA3 cells and transgenic zebrafish with compounds known to modulate the activity of the autophagy protein quality control pathway altered the number of detergent-insoluble ataxin-3 particles detected by flow cytometry. We conclude that flow cytometry is a powerful tool that can be harnessed to rapidly quantify ataxin-3 aggregates, both in vitro and in vivo , and can be utilised to screen and compare potential protein aggregate targeting therapies.