BH
Brandon Hayes
Author with expertise in Macromolecular Crystallography Techniques
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(60% Open Access)
Cited by:
6
h-index:
7
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
52

Near-Physiological-Temperature Serial Femtosecond X-ray Crystallography Reveals Novel Conformations of SARS-CoV-2 Main Protease Active Site for Improved Drug Repurposing

Serdar Durdağı et al.Sep 9, 2020
Abstract The COVID19 pandemic has resulted in 25+ million reported infections and nearly 850.000 deaths. Research to identify effective therapies for COVID19 includes: i) designing a vaccine as future protection; ii) structure-based drug design; and iii) identifying existing drugs to repurpose them as effective and immediate treatments. To assist in drug repurposing and design, we determined two apo structures of Severe Acute Respiratory Syndrome CoronaVirus-2 main protease at ambienttemperature by Serial Femtosecond X-ray crystallography. We employed detailed molecular simulations of selected known main protease inhibitors with the structures and compared binding modes and energies. The combined structural biology and molecular modeling studies not only reveal the dynamics of small molecules targeting main protease but will also provide invaluable opportunities for drug repurposing and structure-based drug design studies against SARS-CoV-2. One Sentence Summary Radiation-damage-free high-resolution SARS-CoV-2 main protease SFX structures obtained at near-physiological-temperature offer invaluable information for immediate drug-repurposing studies for the treatment of COVID19.
52
Paper
Citation4
0
Save
0

Ambient Temperature Bacterial Large Ribosomal Subunit Structure Enabled by Serial Femtosecond X-ray Crystallography

Bilge Tosun et al.Oct 27, 2023
ABSTRACT Ribosomes are the supramolecular complexes responsible for protein synthesis. The large 50S ribosomal subunit catalyzes the peptidyl transferase reaction and peptide bond formation between amino acids. The 50S is targeted by many known clinically effective antibiotics. Available structures, obtained at cryogenic temperatures (CT), are used for drug discovery despite that active or important target sites may display a structural configuration that is CT-induced. The introduction of ultrafast and ultrabright X-ray free electron laser (XFEL) pulses has enabled the structural observation of biological macro- and supramolecules at previously unattainable, near-physiological temperatures. In this study, we use ultrafast and ultrabright XFEL pulses to solve the apo form of 50S ribosomal subunit isolated from the extremely thermophilic bacterium Thermus thermophilus at ambient temperature (AT). The dimeric structure of the 50S subunit presented in this work is among the largest (∼3 megadalton) structures determined using an XFEL source to date. This study demonstrates the ability to obtain new information about ribosome structural dynamics at AT through serial femtosecond X-ray crystallography (SFX). This allowed us to capture previously unobserved dynamics of ribosomal protein uL23 and coordination by hexahydrated magnesium cations at a hitherto unseen resolution at near-physiological temperature. Also, residue A2602, at the core of the peptidyl transferase center (PTC), shows a rather different orientation of the sugar moiety if compared to CT structures. In addition, our structure highlights the importance of flexible residues at both the PTC and in the binding sites for antibiotics erythromycin and chloramphenicol. The method implemented here may also serve as a starting point for future structural research involving the 50S subunit complexes by employing time-resolved mix-inject and probe kineto-crystallography experiments at XFELs. Unveiling ligand-dependent 50S dynamics at physiological temperatures shall guide further development of next-generation antibiotics that target the translation machinery.
0

4D Crystallography Captures Transient IF1-Ribosome Dynamics in Translation Initiation

İlkin Yapici et al.Oct 29, 2023
Abstract Initiation factor 1 (IF1) is one of multiple key ligands involved in the initiation of mRNA translation, a highly dynamic and carefully-orchestrated process. However, details surrounding IF1 transient interactions with the small 30S ribosomal subunit remain incompletely understood despite characterization of unbound and fully-bound 30S states. Improvements in X-ray light sources and crystallographic techniques are now enabling time-resolved structural studies at near-physiological temperature and near-atomic resolution and thus the structural investigation of such dynamic processes. Here, we employed time-resolved serial femtosecond X-ray crystallography (TR-SFX) to probe the binding of IF1 to the small 30S ribosomal subunit in real time. Our time-resolved structural data demonstrates transient cryptic short-, mid-, and long-range allostery among different regions of the small 30 ribosomal subunit during IF1 binding, revealing small- and large-scale protein-target interactions and dynamics within intermediate macromolecular states at unprecedented temporal and spatial resolution. These data represent one of the first such 4D crystallographic studies assessing protein-protein and protein-RNA interactions and could serve as the basis for subsequent studies of the ribosome and of the multitudinous dynamic processes which underpin biology, and therefore, of life.
0

Structure of the 30S ribosomal decoding complex at ambient temperature

E. Dao et al.Feb 10, 2018
The ribosome translates nucleotide sequences of messenger RNA to proteins through selection of cognate transfer RNA according to the genetic code. To date, structural studies of ribosomal decoding complexes yielding high-resolution data have predominantly relied on experiments performed at cryogenic temperatures. New lightsources like the X-ray free electron laser (XFEL) have enabled data collection from macromolecular crystals at ambient temperature. Here, we report an X-ray crystal structure of the Thermus thermophilus 30S ribosomal subunit decoding complex to 3.45 Angstroem resolution using data obtained at ambient temperature at the Linac Coherent Light Source (LCLS). We find that this ambient-temperature structure is largely consistent with existing cryogenic-temperature crystal structures, with key residues of the decoding complex exhibiting similar conformations, including adenosine residues 1492 and 1493. Minor variations were observed, namely an alternate conformation of cytosine 1397 near the mRNA channel and the A-site. Our serial crystallography experiment illustrates the amenability of ribosomal microcrystals to routine structural studies at ambient temperature, thus overcoming a long-standing experimental limitation.
0

Aminoglycoside ribosome interactions reveal novel conformational states at ambient temperature

Mary O’Sullivan et al.Jul 19, 2018
The bacterial 30S ribosomal subunit is a primary antibiotic target. Despite decades of discovery, the mechanisms by which antibiotic binding induces ribosomal dysfunction are not fully understood. Ambient temperature crystallographic techniques allow more biologically relevant investigation of how local antibiotic binding site interactions trigger global subunit rearrangements that perturb protein synthesis. Here, the structural effects of 2-deoxystreptamine (paromomycin and sisomicin), a novel sisomicin derivative, N1-methyl sulfonyl sisomicin (N1MS) and the non-deoxystreptamine (streptomycin) aminoglycosides on the ribosome at ambient and cryogenic temperatures were examined. Comparative studies led to three main observations. First, individual aminoglycoside-ribosome interactions in the decoding center were similar for cryogenic vs ambient temperature structures. Second, analysis of a highly conserved GGAA tetraloop of h45 revealed aminoglycoside-specific conformational changes, which are affected by temperature only for N1MS. We report the h44/h45 interface in varying states, that is, engaged, disengaged and in equilibrium. Thirdly, we observe aminoglycoside-induced effects on 30S domain closure, including a novel intermediary closure state, which is also sensitive to temperature. Analysis of three ambient and five cryogenic crystallography datasets reveal a correlation between h44/h45 engagement and domain closure. These observations illustrate the role of ambient temperature crystallography in identifying dynamic mechanisms of ribosomal dysfunction induced by local drug-binding site interactions. Together these data identify tertiary ribosomal structural changes induced by aminoglycoside binding that provides functional insight and targets for drug design.
0

Coupled inter-subunit dynamics enable the fastest CO2-fixation by reductive carboxylases

Hasan DeMi̇rci̇ et al.Apr 12, 2019
Enoyl-CoA carboxylases/reductases (ECRs) are the most efficient CO2-fixing enzymes described to date, outcompeting RubisCO, the key enzyme in photosynthesis in catalytic activity by more than an order of magnitude. However, the molecular mechanisms underlying ECR's extraordinary catalytic activity remain elusive. Here we used different crystallographic approaches, including ambient temperature X-ray Free Electron Laser (XFEL) experiments, to study the dynamic structural organization of the ECR from Kitasatospora setae. K. setae ECR is a homotetramer that differentiates into a dimer of dimers of open- and closed-form subunits in the catalytically active state, suggesting that the enzyme operates with "half-site reactivity" to achieve high catalytic rates. Using structure-based mutagenesis, we show that catalysis is synchronized in K. setae ECR across the pair of dimers by conformational coupling of catalytic domains and within individual dimers by shared substrate binding sites. Our results provide unprecedented insights into the dynamic organization and synchronized inter- and intra-subunit communications of nature's most efficient CO2-fixing enzyme during catalysis.
1

Case Study of High-Throughput Drug Screening and Remote Data Collection for SARS-CoV-2 Main Protease by Using Serial Femtosecond X-ray Crystallography

Ömür Güven et al.Nov 30, 2021
Abstract Since early 2020, COVID-19 has grown to affect the lives of billions globally. A worldwide investigation has been ongoing for characterizing the virus and also for finding an effective drug and developing vaccines. As time has been of the essence, a crucial part of this research has been drug repurposing; therefore, confirmation of in-silico drug screening studies has been carried out for this purpose. Here we demonstrated the possibility of screening a variety of drugs efficiently by leveraging a high data collection rate of 120 images/second with the new low-noise, high dynamic range ePix10k2M Pixel Array Detector installed at the Macromolecular Femtosecond Crystallography (MFX) instrument at the Linac Coherent Light Source (LCLS). The X-ray Free-Electron Laser (XFEL) is used for remote high-throughput data collection for drug repurposing of the main protease (Mpro) of SARS-CoV-2 at ambient temperature with mitigated X-ray radiation damage. We obtained multiple structures soaked with 9 drug candidate molecules in two crystal forms. Although our drug binding attempts failed, we successfully established a high-throughput Serial Femtosecond X-ray crystallographic (SFX) data collection protocol.
2

Structural basis for functional properties of cytochromecoxidase

Izumi Ishigami et al.Mar 22, 2023
Cytochrome c oxidase (CcO) is an essential enzyme in mitochondrial and bacterial respiration. It catalyzes the four-electron reduction of molecular oxygen to water and harnesses the chemical energy to translocate four protons across biological membranes, thereby establishing the proton gradient required for ATP synthesis1. The full turnover of the CcO reaction involves an oxidative phase, in which the reduced enzyme (R) is oxidized by molecular oxygen to the metastable oxidized OH state, and a reductive phase, in which OH is reduced back to the R state. During each of the two phases, two protons are translocated across the membranes2. However, if OH is allowed to relax to the resting oxidized state (O), a redox equivalent to OH, its subsequent reduction to R is incapable of driving proton translocation2,3. How the O state structurally differs from OH remains an enigma in modern bioenergetics. Here, with resonance Raman spectroscopy and serial femtosecond X-ray crystallography (SFX)4, we show that the heme a3 iron and CuB in the active site of the O state, like those in the OH state5,6, are coordinated by a hydroxide ion and a water molecule, respectively. However, Y244, a residue covalently linked to one of the three CuB ligands and critical for the oxygen reduction chemistry, is in the neutral protonated form, which distinguishes O from OH, where Y244 is in the deprotonated tyrosinate form. These structural characteristics of O provide new insights into the proton translocation mechanism of CcO.