MV
Marina Vafeiadi
Author with expertise in The Exposome in Environmental Health Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(83% Open Access)
Cited by:
409
h-index:
39
/
i10-index:
69
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Human Early Life Exposome (HELIX) study: a European population-based exposome cohort

Léa Maitre et al.Sep 1, 2018
Essential to exposome research is the collection of data on many environmental exposures from different domains in the same subjects. The aim of the Human Early Life Exposome (HELIX) study was to measure and describe multiple environmental exposures during early life (pregnancy and childhood) in a prospective cohort and associate these exposures with molecular omics signatures and child health outcomes. Here, we describe recruitment, measurements available and baseline data of the HELIX study populations.The HELIX study represents a collaborative project across six established and ongoing longitudinal population-based birth cohort studies in six European countries (France, Greece, Lithuania, Norway, Spain and the UK). HELIX used a multilevel study design with the entire study population totalling 31 472 mother-child pairs, recruited during pregnancy, in the six existing cohorts (first level); a subcohort of 1301 mother-child pairs where biomarkers, omics signatures and child health outcomes were measured at age 6-11 years (second level) and repeat-sampling panel studies with around 150 children and 150 pregnant women aimed at collecting personal exposure data (third level).Cohort data include urban environment, hazardous substances and lifestyle-related exposures for women during pregnancy and their offspring from birth until 6-11 years. Common, standardised protocols were used to collect biological samples, measure exposure biomarkers and omics signatures and assess child health across the six cohorts. Baseline data of the cohort show substantial variation in health outcomes and determinants between the six countries, for example, in family affluence levels, tobacco smoking, physical activity, dietary habits and prevalence of childhood obesity, asthma, allergies and attention deficit hyperactivity disorder.HELIX study results will inform on the early life exposome and its association with molecular omics signatures and child health outcomes. Cohort data are accessible for future research involving researchers external to the project.
0
Citation205
0
Save
0

Early-Life Environmental Exposures and Childhood Obesity: An Exposome-Wide Approach

Martine Vrijheid et al.Jun 1, 2020
Vol. 128, No. 6 ResearchOpen AccessEarly-Life Environmental Exposures and Childhood Obesity: An Exposome-Wide Approach Martine Vrijheid, Serena Fossati, Léa Maitre, Sandra Márquez, Theano Roumeliotaki, Lydiane Agier, Sandra Andrusaityte, Solène Cadiou, Maribel Casas, Montserrat de Castro, Audrius Dedele, David Donaire-Gonzalez, Regina Grazuleviciene, Line S. Haug, Rosemary McEachan, Helle Margrete Meltzer, Eleni Papadopouplou, Oliver Robinson, Amrit K. Sakhi, Valerie Siroux, Jordi Sunyer, Per E. Schwarze, Ibon Tamayo-Uria, Jose Urquiza, Marina Vafeiadi, Antonia Valentin, Charline Warembourg, John Wright, Mark J. Nieuwenhuijsen, Cathrine Thomsen, Xavier Basagaña, Rémy Slama, and Leda Chatzi Martine Vrijheid Address correspondence to M. Vrijheid, ISGlobal, Institute for Global Health, C/Doctor Aiguader 88, 08003, Barcelona, Spain. Telephone: +34 93 2147306. Email: E-mail Address: [email protected] ISGlobal, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain CIBER Epidemiología y Salud Pública (CIBERESP), Spain , Serena Fossati ISGlobal, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain CIBER Epidemiología y Salud Pública (CIBERESP), Spain , Léa Maitre ISGlobal, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain CIBER Epidemiología y Salud Pública (CIBERESP), Spain , Sandra Márquez ISGlobal, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain CIBER Epidemiología y Salud Pública (CIBERESP), Spain , Theano Roumeliotaki Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece , Lydiane Agier Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, INSERM, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences (IAB), U1209 Joint Research Center, Grenoble, France , Sandra Andrusaityte Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania , Solène Cadiou Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, INSERM, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences (IAB), U1209 Joint Research Center, Grenoble, France , Maribel Casas ISGlobal, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain CIBER Epidemiología y Salud Pública (CIBERESP), Spain , Montserrat de Castro ISGlobal, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain CIBER Epidemiología y Salud Pública (CIBERESP), Spain , Audrius Dedele Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania , David Donaire-Gonzalez ISGlobal, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain CIBER Epidemiología y Salud Pública (CIBERESP), Spain Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia , Regina Grazuleviciene Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania , Line S. Haug Norwegian Institute of Public Health, Oslo, Norway , Rosemary McEachan Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK , Helle Margrete Meltzer Norwegian Institute of Public Health, Oslo, Norway , Eleni Papadopouplou Norwegian Institute of Public Health, Oslo, Norway , Oliver Robinson ISGlobal, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain CIBER Epidemiología y Salud Pública (CIBERESP), Spain MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK , Amrit K. Sakhi Norwegian Institute of Public Health, Oslo, Norway , Valerie Siroux Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, INSERM, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences (IAB), U1209 Joint Research Center, Grenoble, France , Jordi Sunyer ISGlobal, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain CIBER Epidemiología y Salud Pública (CIBERESP), Spain , Per E. Schwarze Norwegian Institute of Public Health, Oslo, Norway , Ibon Tamayo-Uria ISGlobal, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain CIBER Epidemiología y Salud Pública (CIBERESP), Spain Division of Immunology and Immunotherapy, CIMA, Universidad de Navarra, and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain , Jose Urquiza ISGlobal, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain CIBER Epidemiología y Salud Pública (CIBERESP), Spain , Marina Vafeiadi Department of Social Medicine, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece , Antonia Valentin ISGlobal, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain CIBER Epidemiología y Salud Pública (CIBERESP), Spain , Charline Warembourg ISGlobal, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain CIBER Epidemiología y Salud Pública (CIBERESP), Spain , John Wright Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK , Mark J. Nieuwenhuijsen ISGlobal, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain CIBER Epidemiología y Salud Pública (CIBERESP), Spain , Cathrine Thomsen Norwegian Institute of Public Health, Oslo, Norway , Xavier Basagaña ISGlobal, Barcelona, Spain Universitat Pompeu Fabra (UPF), Barcelona, Spain CIBER Epidemiología y Salud Pública (CIBERESP), Spain , Rémy Slama Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, INSERM, CNRS, University Grenoble Alpes, Institute for Advanced Biosciences (IAB), U1209 Joint Research Center, Grenoble, France , and Leda Chatzi Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA Published:24 June 2020CID: 067009https://doi.org/10.1289/EHP5975AboutSectionsPDF Supplemental Materials ToolsDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InRedditEmail AbstractBackground:Chemical and nonchemical environmental exposures are increasingly suspected to influence the development of obesity, especially during early life, but studies mostly consider single exposure groups.Objectives:Our study aimed to systematically assess the association between a wide array of early-life environmental exposures and childhood obesity, using an exposome-wide approach.Methods:The HELIX (Human Early Life Exposome) study measured child body mass index (BMI), waist circumference, skinfold thickness, and body fat mass in 1,301 children from six European birth cohorts age 6–11 y. We estimated 77 prenatal exposures and 96 childhood exposures (cross-sectionally), including indoor and outdoor air pollutants, built environment, green spaces, tobacco smoking, and biomarkers of chemical pollutants (persistent organic pollutants, metals, phthalates, phenols, and pesticides). We used an exposure-wide association study (ExWAS) to screen all exposure–outcome associations independently and used the deletion-substitution-addition (DSA) variable selection algorithm to build a final multiexposure model.Results:The prevalence of overweight and obesity combined was 28.8%. Maternal smoking was the only prenatal exposure variable associated with higher child BMI (z-score increase of 0.28, 95% confidence interval: 0.09, 0.48, for active vs. no smoking). For childhood exposures, the multiexposure model identified particulate and nitrogen dioxide air pollution inside the home, urine cotinine levels indicative of secondhand smoke exposure, and residence in more densely populated areas and in areas with fewer facilities to be associated with increased child BMI. Child blood levels of copper and cesium were associated with higher BMI, and levels of organochlorine pollutants, cobalt, and molybdenum were associated with lower BMI. Similar results were found for the other adiposity outcomes.Discussion:This first comprehensive and systematic analysis of many suspected environmental obesogens strengthens evidence for an association of smoking, air pollution exposure, and characteristics of the built environment with childhood obesity risk. Cross-sectional biomarker results may suffer from reverse causality bias, whereby obesity status influenced the biomarker concentration. https://doi.org/10.1289/EHP5975IntroductionRates of childhood obesity are increasing at alarming rates across the globe, with some leveling-off of this trend reported in Europe and high-income English-speaking regions [NCD Risk Factor Collaboration (NCD-RisC) 2017]. Greater body mass index (BMI) and adiposity in childhood are associated with future risk of type 2 diabetes, cardiovascular disease, certain cancers, lack of school achievement, and mental health problems (Park et al. 2012; Quek et al. 2017; Singh et al. 2008). Further, weight gained during childhood and adolescence is difficult to lose and likely to lead to adult overweight and obesity (Geserick et al. 2018). The primary cause of obesity is the imbalance between energy intake and energy expenditure (McAllister et al. 2009). Exposure to a wider range of environmental factors may influence this balance, either at the individual level by chemical exposures that influence metabolic programming, or at the community level by factors associated with the urban or built environment (Lichtveld et al. 2018; Trasande et al. 2009; Wilding et al. 2019).At the individual level, a number of common chemical contaminants, including persistent organic pollutants, toxic metals, pesticides, tobacco smoke, and additives used in plastics and cosmetics, such as phthalates and phenols, may perturb adipogenesis and energy storage by interfering with the action of endogenous hormones, especially when exposure occurs in utero or during early life (Behl et al. 2013; Braun 2017; Janesick and Blumberg 2016; Thayer et al. 2012). Maternal exposure to ambient air pollution has convincingly been linked to reduced fetal growth and lower birth weight (Pedersen et al. 2013), and, as an extension, air pollution exposure during childhood may also be etiologically relevant to growth and the risk of obesity (Jerrett et al. 2014; Kim et al. 2018; McConnell et al. 2015). At the community level, built environment characteristics, such as walkability and green spaces, play a potential role in child physical activity habits and other health behaviors, and consequently in the development of childhood obesity, as childhood exposure studies have demonstrated (Gascon et al. 2016; Lachowycz and Jones 2011; Lichtveld et al. 2018; Saelens et al. 2018). One study has associated pregnancy traffic noise exposure, but not childhood exposure, with child BMI trajectories (Weyde et al. 2018). Further, in adults, ambient temperature and noise exposure have been linked to increased obesity risk, and exposure to ultraviolet (UV) radiation has been linked to reduced obesity risk (Gorman et al. 2017; Pyko et al. 2017; Voss et al. 2013).Epidemiological studies on the early-life obesogenic effects of these environmental chemical and nonchemical stressors have almost exclusively assessed the risks of single-exposure families (Lichtveld et al. 2018), with the exception of a few multipollutants studies that included chemicals from three or four different exposure groups (Agay-Shay et al. 2015; Zhang et al. 2019). The exposome, described as "the totality of human environmental exposures from conception onward," recognizes that individuals are exposed simultaneously to a multitude of different factors and takes a holistic and agnostic approach to the discovery of etiological factors (Wild 2012). Even in its partial forms, the exposome provides a useful framework to systematically evaluate many associations (Wild 2012) and may be used to avoid problems of selective reporting, publication bias, and, to some extent, confounding by coexposures, ingrained in the typical one-by-one reporting of associations. Consequently, the exposome may help both in discovery and in setting priorities for prevention. Exposome-wide discovery approaches have recently been used to systematically assess many environmental exposures and reproductive and child health outcomes (e.g., lung function, semen quality, birth weight) (Agier et al. 2019; Chung et al. 2019; Nieuwenhuijsen et al. 2019).In our study, we used an exposome approach to systematically assess the associations between a wide array of ubiquitous environmental exposures measured prenatally and during childhood with obesity indicators in children at primary school age.MethodsStudy PopulationThe HELIX (Human Early Life Exposome) project (Vrijheid et al. 2014) is a collaborative project across six established, ongoing, longitudinal population-based birth cohort studies in Europe: Born in Bradford (BiB) in the United Kingdom (Wright et al. 2013), Étude des Déterminants pré et postnatals du développement et de la santé de l'Enfant (EDEN) in France (Heude et al. 2016), INfancia y Medio Ambiente (INMA) in Spain (Guxens et al. 2012), Kaunas cohort (KANC) in Lithuania (Grazuleviciene et al. 2009), the Norwegian Mother and Child Cohort (MoBa) (Magnus et al. 2016), and the Rhea Mother Child Cohort in Greece (Chatzi et al. 2017). These cohorts contributed to the HELIX subcohort of z mother–child pairs who participated in a common, completely harmonized, follow-up examination between December 2013 and February 2016, when the children were between 6–11 y old, as fully described elsewhere (Maitre et al. 2018). Eligibility criteria for inclusion in the subcohort were: a) age 6–11 y at the time of the visit, with a preference for ages 7–9 y; b) sufficient stored pregnancy blood and urine samples available for analysis of prenatal exposure biomarkers; c) complete address history available from first to last follow-up point; and d) no serious health problems that may affect the performance of the clinical testing or affect the volunteer's safety (e.g., acute respiratory infection). In addition, the selection considered whether data on important covariates (diet, socioeconomic factors) were available. Each cohort selected participants at random from the eligible pool in the entire cohort and invited them to participate in this subcohort until the required number of participants was reached. Our comparison of the subcohort with the entire group of cohorts (Maitre et al. 2018) showed that basic characteristics of the subcohort were somewhat different from those of the entire cohort, probably reflecting selective participation of families in the intensive subcohort follow-up visit and data completeness requirements. Compared with the entire cohort, the subcohort contained a greater percentage of boys, fewer children whose parents were born abroad, a lower percentage of mothers with low education, a lower percentage of primiparous mothers, and more older mothers. The work was covered by ethics approvals from each cohort, and all participants signed an informed consent form for the specific HELIX work, including clinical examination and biospecimen collection and analysis.Environmental ExposuresWe included 77 environmental exposures assessed during pregnancy and 96 exposures assessed during childhood at age 6–11 y (Table 1). The exposures were selected at the start of the HELIX project, because they were of concern for more than one of the health outcomes under study and because population exposure was widespread (Vrijheid et al. 2014). Some exposure variables available in the project (Tamayo-Uria et al. 2019) were not included in the current analysis for the following reasons: a) They had <30 subjects in one exposure category without possibility to recode [this was the case for diethyl dithiophosphate (DEDTP) in pregnancy and childhood, and dimethyl dithiophosphate (DMDTP) in pregnancy]. b) They had a correlation of 0.9 or higher with another similar variable of the same exposure group, in which case we selected one exposure variable representative for the group or a sum variable as described below under the specific exposures. c) They were calculated for several exposure time windows, in which case we included only the longest exposure window (e.g., pregnancy average instead of trimester averages).Table 1 Exposure variables included in the prenatal and childhood exposome.Table 1 has four columns, namely, exposure group, exposure assessment method, exposure variables, and number of variables.Exposure groupExposure assessment methodExposure variablesNumber of variablesBuilt environmentGIS linkage to local or Europe-wide maps (Table S1)Population density (inhabitants per km2), building density (built area in m2 per km2), street connectivity (number of road intersections per km2), accessibility with bus public transport (meters of bus lines and number of bus stops), facility richness (pregnancy onlya) and facility density, Land Use Evenness Index and walkability index, each within a 300-m buffer. Home address during pregnancy. Home and school address during childhood (walkability only home). All using buffer of 300-m.915Surrounding natural spacesGIS linkage to satellite images and local or Europe-wide maps (Table S1)Average Normalized Difference Vegetation Index (NDVI) within buffer of 100m; presence of a major green space in a distance of 300m; presence of a major blue space in a distance of 300m. Home address during pregnancy. Home and school address during childhood.36MeteorologyGIS linkage to local weather station data (Table S1)Temperature, humidity, pressure at home address. Pressure only available during pregnancy. Averaged over pregnancy and month before visit during childhood.32Ultraviolet (UV)GIS linkage to satellite measurementsAmbient UV radiation levels at home address. Averaged over month before visit during childhood. Not included in pregnancy.b01Outdoor air pollutionGIS linkage to existing local land-use regression models from the ESCAPE project or dispersion models (Table S1). Temporal adjustment using local monitoring data.NO2, PM10, PM10, PM2.5abs at home address. Averaged over pregnancy and year before visit in childhood.44TrafficGIS linkage to local road network maps (Table S1)Total traffic load of roads in a 100-m buffer (pregnancy and childhood home address), total traffic load of major roads in a 100-m buffer (childhood home and school), traffic density on nearest road (pregnancy and childhood home), and inverse distance to nearest road (pregnancy and childhood home).35Road traffic noiseGIS linkage to municipal noise maps (Table S1)24-hour road noise levels (pregnancy, and childhood home and school address). Nighttime noise levels for home during childhood.13Indoor air pollutionNewly development prediction models based on indoor measurements and questionnaire dataNO2, TEX, Benzene, PM10, PM2.5abs05Tobacco smokingQuestionnaires and biomarker measurement of cotinineUrine concentration of cotinine (pregnancy and childhoodc), active/secondhand smoking during pregnancy, number of cigarettes during pregnancy, parental smoking, and secondhand smoking during childhood.33Organochlorine compounds (OCs)Biomarker measurementBlood concentrations of DDE, DDT, HCB, PCB (118, 138, 153, 170, 180), and sum of the PCBs99Polybrominated diphenyl ethers (PBDEs)Biomarker measurementBlood concentrations of PBDE47, PBDE15322Perfluoroalkyl substances (PFAS)Biomarker measurementBlood concentrations of PFOA, PFNA, PFUnDA, PFHxS, PFOS55Metals and elementsBiomarker measurementBlood concentrations of As, Cd, Co, Cs, Cu, Hg, Mn, Mo, Pb, Tl1010Phthalate metabolitesBiomarker measurementUrine concentrations of MEP, MiBP, MnBP, MBzP, MEHP, MEHHP, MEOHP, MECPP, OHMiNP, OXOMiNP, and sum of DEHP metabolitesc1111PhenolsBiomarker measurementUrine concentrations of MEPA, ETPA, BPA, PRPA, BUPA, OXBE, TRCSc77Organophosphate (OP) pesticide metabolitesBiomarker measurementUrine concentrations of DMP, DMTP, DMDTP (childhood only), DEP, DETPc45Water disinfection by-products (DBPs)Existing prediction models from the HiWATE project based on routine water DBP measurementsTHM, chloroform, brominated THMs tap water concentrations (pregnancy only)30Social and economic capitalQuestionnairesFamily affluence score, social contact with friends and family, social participation in organizations03Total7796Note: As, arsenic; BPA, bisphenol A; BUPA, N-butyl paraben; Cd, cadmium; Co, cobalt; Cs, cesium; Cu, copper; DBP, disinfection by-products; DDE, 4,4′dichlorodiphenyl dichloroethylene; DDT, 4,4′dichlorodiphenyltrichloroethane; DEP, diethyl phosphare; DEHP, di(2-ethylhexyl) phthalate; DETP, diethyl thiophosphate; DEDTP, diethyl dithiophosphate; DMP, dimethyl phosphate; DMTP, dimethyl thiophosphate; DMDTP, dimethyl dithiophosphate; ETPA, ethyl paraben; HCB, hexachlorobenzene; Hg, mercury; MBzP, mono benzyl phthalate; MECPP, mono-2-ethyl 5-carboxypentyl phthalate; MEHP, mono(2-ethylhexyl) phthalate; MEHHP, mono(2-ethyl-5-hydroxyhexyl) phthalate; MEOHP, mono(2-ethyl-5-oxohexyl) phthalate; MEP, monoethyl phthalate; MEPA, methyl paraben; MiBP, mono-iso-butyl phthalate; Mn, manganese; Mo, molybdenum; MnBP, mono-n-butyl phthalate; NO2, nitrogen dioxide; OHMiNP, mono-4-methyl-7-hydroxyoctyl phthalate; OP, organophosphate; OXBE, oxybenzone; OXOMiNP, mono-4-methyl-7-oxooctyl phthalate; Pb, lead; PBDE47, 2,2′,4,4′-tetra-bromodiphenyl ether; PBDE153, 2,2′,4,4′,5,5′-hexa-bromodiphenyl ether; PCB, polychlorinated biphenyl –118, 138, 153, 170, 180; PFHxS, perfluorohexane sulfonate; PFNA, perfluorononanoate; PFOA, perfluorooctanoate; PFOS, perfluorooctane sulfonate; PFUnDA, perfluoroundecanoate; PM2.5, particulate matter with an aerodynamic diameter of less than 2.5μm; PM10, particulate matter with an aerodynamic diameter of less than 10μm; PM2.5abs, absorbance of PM10 filters; PRPA, propyl paraben; TEX, toluene, ethylbenzene, xylene; Tl, thallium; THM, trihalomethanes; TRCS, triclosan.aExcluded from prenatal exposome due to very high correlation with temperature (r>0.9).bExcluded from childhood exposome due to very high correlation with facility density (r>0.9).cDuring childhood, the urine sample analyzed was a pool of equal amounts of two spot urine samples collected at bedtime the day before and in the morning on the day of the clinical examination.Urban EnvironmentUrban environment exposures (built environment, surrounding natural spaces, meteorology, UV radiation, outdoor air pollution, traffic, and road traffic noise) were estimated as part of the HELIX project using geospatial models, monitoring stations, satellite data, and land use databases and were assigned to study participants according to their geocoded home and school addresses using GIS platforms [described in detail by Robinson et al. (2018), Nieuwenhuijsen et al. (2019), Tamayo-Uria et al. (2019)]. Sources of data for each exposure are summarized in Table S1. Exposures were averaged over the entire pregnancy (prenatal exposures) and over the year before the child examination (childhood exposures), with the exception of UV radiation and meteorological variables (temperature, humidity), which were averaged over the month before the child examination. If the family moved during those periods, exposures were calculated for each address and then averaged over the period (pregnancy, year before child examination).Built environment factors were calculated from topological maps obtained from local authorities or from Europe-wide sources. Buffers of 100 and 300m were used, but in this study only the 300-m buffer estimates were included due to the high correlations between variables. Building density was calculated within the 300-m buffer by dividing the area of building cover (m2) by the area of the buffer (km2). Population density was calculated as the number of inhabitants per square kilometer surrounding the home address. Street connectivity was calculated as the number of street intersections inside the 300-m buffers, divided by the area (km2) of the buffer. A facility richness index was calculated as the number of different facility types present divided by the maximum potential number of facility types specified, in a buffer of 300m, giving a score of 0 to 1. Facilities included businesses, community services, educational institutions, entertainment, financial institutions, hospitals, parks and recreation, restaurants, shopping, and transport (Smargiassi et al. 2009; European Environmental Agency 2010). A facility density index was calculated as the number of facilities present divided by the area of the buffer (number of facilities/km2). Due to the high correlation between facility richness and density (r>0.9) in the childhood exposure data set, only facility density was retained. Land use Shannon's Evenness Index (SEI) was calculated to provide the proportional abundance of each type of land use within the buffer, giving a score between 0 and 1 (Shannon 2001). It was calculated by multiplying each proportion of land use type by its logarithm and dividing the sum of all land use type products by the logarithm of the total possible land use types. We developed an indicator of walkability, adapted from the previous walkability indices (Duncan et al. 2011; Frank et al. 2006; https://www.walkscore.com), calculated as the mean and sum of the deciles of population density, street connectivity, facility richness index, and land use SEI within 300-m buffers, giving a walkability score ranging from 0 to 1. Accessibility was measured by bus public transport lines (meters of bus lines inside the buffer) and stops (number of bus stops inside the buffer), using maps from local authorities and OpenStreetMap® ( https://www.openstreetmap.org/#map=4/38.01/-95.84) (Table S1).Surrounding natural space indicators included the Normalized Difference Vegetation Index (NDVI) and presence of major green and blues spaces. The NDVI was used to measure surrounding vegetation (trees, shrubs, and park) (Weier and Herring 2000) and calculated following the protocol developed in the Positive Health Effects of the Natural Outdoor Environment in Typical Populations in Different Regions in Europe (PHENOTYPE) study (Nieuwenhuijsen et al. 2014). Satellite images were derived from the Landsat 4–5 TM, Landsat 7 ETM+, and Landsat 8 OLI/TIRS satellites with 30m×30m resolution. We selected images for 1 y relevant to the pregnancy period and for 1 y relevant to the subcohort follow-up, according to the following criteria: a) cloud cover less than 10%; b) Standard Terrain Correction (Level 1T); and c) greenest period of the year. This study uses the 100-m buffer for NDVI. The presence of major green spaces (parks or countryside) or blue spaces (bodies of water) was calculated by dichotomous variables, which indicate whether a major (area greater than 5,000 m2) green/blue space was present or not within a 300-m buffer from Europe-wide or local topographical maps (Table S1) (Smargiassi et al. 2009; European Environmental Agency 2010).Meteorological variables were calculated using daily measures of temperature and humidity obtained from local weather stations in each study area. Pressure data were obtained from the ESCAPE project (Giorgis-Allemand et al. 2017), and were available only for the pregnancy period. In this study, we used values averaged over the pregnancy period and over the month before the subcohort visit, and we used childhood exposure calculated for the home, not the school, address.UV radiation was estimated from daily measurements of ultraviolet (UV) radiation obtained from the Global Ozone Monitoring Experiment on board the European Remote Sensing satellite 2 (ERS-2) ( http://www.temis.nl/uvradiation/archives) at 0:5×0:5-degree resolution. These were averaged over the month before the subcohort visit and were not available during pregnancy.Outdoor air pollution estimates were calculated for nitrogen dioxide (NO2), particulate matter with an aerodynamic diameter of less than 2.5μm (PM10) and particulate matter with an aerodynamic diameter of less than 10μm (PM10), as well as absorbance of PM10 filters (PM2.5abs—a marker of black/elemental carbon originating from combustion). As part of the HELIX study, exposure estimates were calculated using existing land use regression models developed in the context of the ESCAPE project (Beelen et al. 2009, 2013; Cyrys et al. 2012; Eeftens et al. 2012a, 2012b; Schembari et al. 2015; Wang et al. 2014), except the EDEN cohort [where we applied existing NO2 and PM10 dispersion models developed specifically for that cohort (Rahmalia et al. 2012)] (Table S1). These estimates were temporally adjusted to measurements made at the local background monitoring stations and averaged over the periods of interest for the HELIX study. Back-extrapolation based on other available pollutants was used when data on a pollutant were not available. In particular, daily PM10 was used to adjust NO2; daily NO2 or PM10 to adjust PM10; daily NO2 to adjust PM10; and daily NOx to adjust PM2.5abs.Traffic density indicators were calculated from road network maps following the ESCAPE protocol (Beelen et al. 2013; Eeftens et al. 2012a), using a 100-m buffer. For Rhea, a fieldwork campaign was conducted in Heraklion in 2015 to assess multiple exposures, including traffic, as previously described (van Nunen et al. 2017). For the analyses in this paper, we selected the total traffic load on all roads, the traffic density on nearest road, and inverse distance to nearest road for the pregnancy and childhood home address, as well as the total traffic load on major roads for the childhood home and school address.Noise levels were derived from noise maps produced in each local municipality under the European Noise Directive (Directive 2002/49/EC of the European Parliament and of the Council of 25 June 2002 relating to the assessment and management of environmental noise 2002) calculated as the annual average sound
0

Urinary metabolic biomarkers of diet quality in European children are associated with metabolic health

Nikos Stratakis et al.Jan 25, 2022
Urinary metabolic profiling is a promising powerful tool to reflect dietary intake and can help understand metabolic alterations in response to diet quality. Here, we used 1 H NMR spectroscopy in a multicountry study in European children (1147 children from 6 different cohorts) and identified a common panel of 4 urinary metabolites (hippurate, N -methylnicotinic acid, urea, and sucrose) that was predictive of Mediterranean diet adherence (KIDMED) and ultra-processed food consumption and also had higher capacity in discriminating children’s diet quality than that of established sociodemographic determinants. Further, we showed that the identified metabolite panel also reflected the associations of these diet quality indicators with C-peptide, a stable and accurate marker of insulin resistance and future risk of metabolic disease. This methodology enables objective assessment of dietary patterns in European child populations, complementary to traditional questionary methods, and can be used in future studies to evaluate diet quality. Moreover, this knowledge can provide mechanistic evidence of common biological pathways that characterize healthy and unhealthy dietary patterns, and diet-related molecular alterations that could associate to metabolic disease.
0
Citation10
0
Save
4

Identification of autosomal cis expression quantitative trait methylation (cis eQTMs) in children’s blood

Carlos Ruiz‐Arenas et al.Nov 5, 2020
Abstract Background The identification of expression quantitative trait methylation (eQTMs), defined as associations between DNA methylation levels and gene expression, might help the biological interpretation of epigenome-wide association studies (EWAS). We aimed to identify autosomal cis eQTMs in children’s blood, using data from 832 children of the Human Early Life Exposome (HELIX) project. Methods Blood DNA methylation and gene expression were measured with the Illumina 450K and the Affymetrix HTA v2 arrays, respectively. The relationship between methylation levels and expression of nearby genes (1 Mb window centered at the transcription start site, TSS) was assessed by fitting 13.6 M linear regressions adjusting for sex, age, cohort, and blood cell composition. Results We identified 39,749 blood autosomal cis eQTMs, representing 21,966 unique CpGs (eCpGs, 5.7% of total CpGs) and 8,886 unique transcript clusters (eGenes, 15.3% of total transcript clusters, equivalent to genes). In 87.9% of these cis eQTMs, the eCpG was located at <250 kb from eGene’s TSS; and 58.8% of all eQTMs showed an inverse relationship between the methylation and expression levels. Only around half of the autosomal cis-eQTMs eGenes could be captured through annotation of the eCpG to the closest gene. eCpGs had less measurement error and were enriched for active blood regulatory regions and for CpGs reported to be associated with environmental exposures or phenotypic traits. 40.4% of eQTMs had at least one genetic variant associated with methylation and expression levels. The overlap of autosomal cis eQTMs in children’s blood with those described in adults was small (13.8%), and age-shared cis eQTMs tended to be proximal to the TSS and enriched for genetic variants. Conclusions This catalogue of autosomal cis eQTMs in children’s blood can help the biological interpretation of EWAS findings and is publicly available at https://helixomics.isglobal.org/ . Funding: The study has received funding from the European Community’s Seventh Framework Programme (FP7/2007-206) under grant agreement no 308333 (HELIX project); the H2020-EU.3.1.2. - Preventing Disease Programme under grant agreement no 874583 (ATHLETE project); from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 733206 (LIFECYCLE project), and from the European Joint Programming Initiative “A Healthy Diet for a Healthy Life” (JPI HDHL and Instituto de Salud Carlos III) under the grant agreement no AC18/00006 (NutriPROGRAM project). The genotyping was supported by the project PI17/01225, funded by the Instituto de Salud Carlos III and co-funded by European Union (ERDF, “A way to make Europe”) and the Centro Nacional de Genotipado-CEGEN (PRB2-ISCIII).
4
Citation4
0
Save
25

DNA methylation signatures of aggression and closely related constructs: A meta-analysis of epigenome-wide studies across the lifespan

Jenny Dongen et al.Jul 22, 2020
Abstract DNA methylation profiles of aggressive behavior may capture lifetime cumulative effects of genetic, stochastic, and environmental influences associated with aggression. Here, we report the first large meta-analysis of epigenome-wide association studies (EWAS) of aggressive behavior (N=15,324 participants). In peripheral blood samples of 14,434 participants from 18 cohorts with mean ages ranging from 7 to 68 years, 13 methylation sites were significantly associated with aggression (alpha=1.2×10 −7 ; Bonferroni correction). In cord blood samples of 2,425 children from five cohorts with aggression assessed at mean ages ranging from 4 to 7 years, 83% of these sites showed the same direction of association with childhood aggression ( r =0.74, p=0.006) but no epigenome-wide significant sites were found. Top-sites (48 at a false discovery rate of 5% in the peripherl blood meta-analysis or in a combined meta-analysis of peripheral blood and cord blood) have been associated with chemical exposures, smoking, cognition, metabolic traits, and genetic variation (mQTLs). Three genes whose expression levels were associated with top-sites were previously linked to schizophrenia and general risk tolerance. At six CpGs, DNA methylation variation in blood mirrors variation in the brain. On average 44% (range=3-82%) of the aggression–methylation association was explained by current and former smoking and BMI. These findings point at loci that are sensitive to chemical exposures with potential implications for neuronal functions. We hope these results to be a starting point for studies leading to applications as peripheral biomarkers and to reveal causal relationships with aggression and related traits.
25
Citation2
0
Save
0

Multi-omics architecture of childhood obesity and metabolic dysfunction uncovers biological pathways and prenatal determinants

Nikos Stratakis et al.Jan 14, 2025
Childhood obesity poses a significant public health challenge, yet the molecular intricacies underlying its pathobiology remain elusive. Leveraging extensive multi-omics profiling (methylome, miRNome, transcriptome, proteins and metabolites) and a rich phenotypic characterization across two parts of Europe within the population-based Human Early Life Exposome project, we unravel the molecular landscape of childhood obesity and associated metabolic dysfunction. Our integrative analysis uncovers three clusters of children defined by specific multi-omics profiles, one of which characterized not only by higher adiposity but also by a high degree of metabolic complications. This high-risk cluster exhibits a complex interplay across many biological pathways, predominantly underscored by inflammation-related cascades. Further, by incorporating comprehensive information from the environmental risk-scape of the critical pregnancy period, we identify pre-pregnancy body mass index and environmental pollutants like perfluorooctanoate and mercury as important determinants of the high-risk cluster. Overall, our work helps to identify potential risk factors for prevention and intervention strategies early in the life course aimed at mitigating obesity and its long-term health consequences. Obesity encompasses numerous interconnected pathological mechanisms. Here, the authors show that integrating multi-omics data uncovers distinct molecular profiles and prenatal factors linked to childhood obesity and metabolic dysfunction, providing insights for early prevention and intervention strategies.
Load More