TA
Takashi Araki
Author with expertise in Molecular Mechanisms of Plant Development and Regulation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(64% Open Access)
Cited by:
6,855
h-index:
45
/
i10-index:
122
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Hd3a, a Rice Ortholog of the Arabidopsis FT Gene, Promotes Transition to Flowering Downstream of Hd1 under Short-Day Conditions

Shoko Kojima et al.Oct 15, 2002
Heading date 3a (Hd3a) has been detected as a heading-date-related quantitative trait locus in a cross between rice cultivars Nipponbare and Kasalath. A previous study revealed that the Kasalath allele of Hd3a promotes heading under short-day (SD) conditions. High-resolution linkage mapping located the Hd3a locus in a ∼20-kb genomic region. In this region, we found a candidate gene that shows high similarity to the FLOWERING LOCUS T (FT) gene, which promotes flowering in Arabidopsis. Introduction of the gene caused an early-heading phenotype in rice. The transcript levels of Hd3a were increased under SD conditions. The rice Heading date 1 (Hd1) gene, a homolog of CONSTANS (CO), has been shown to promote heading under SD conditions. By expression analysis, we showed that the amount of Hd3a mRNA is up-regulated by Hd1 under SD conditions, suggesting that Hd3a promotes heading under the control of Hd1. These results indicate that Hd3a encodes a protein closely related to Arabidopsis FT and that the function and regulatory relationship with Hd1 and CO, respectively, of Hd3a and FT are conserved between rice (an SD plant) and Arabidopsis (a long-day plant).
0
Citation1,056
0
Save
0

TWIN SISTER OF FT (TSF) Acts as a Floral Pathway Integrator Redundantly with FT

Ayako Yamaguchi et al.Jun 12, 2005
In Arabidopsis, several genetic pathways controlling the floral transition (flowering) are integrated at the transcriptional regulation of FT, LFY and SOC1. TSF is the closest homolog of FT in Arabidopsis. TSF expression was induced rapidly upon activation of CONSTANS (CO). The mRNA levels of TSF and FT showed similar patterns of diurnal oscillation and response to photoperiods: an evening peak, higher levels in long day (LD) than in short day (SD) conditions, and immediate up-regulation upon day-length extension. These observations suggest that TSF is a direct regulatory target of CO. tsf mutation delayed flowering in SD conditions and enhanced the phenotype of ft in both LD and SD conditions. TSF and FT also shared similar modes of regulation by FLC, an integrator of autonomous and vernalization pathways, and other factors such as EBS and PHYB. Consistently, TSF overexpression caused a precocious flowering phenotype independent of photoperiods or CO, or FLC. These observations suggest that TSF is a new member of the floral pathway integrators and promotes flowering largely redundantly with FT but makes a distinct contribution in SD conditions. TSF and FT seem to act independently of each other and of LFY, and partially upstream of SOC1. Interestingly, the expression patterns of TSF and FT in seedlings did not overlap, although both were expressed in the phloem tissues. Our work revealed additional complexity and spatial aspects of the regulatory network at the pathway integration level. We propose that the phloem is the site where multiple regulatory pathways are integrated at the transcriptional regulation of FT and TSF.
0
Citation467
0
Save
0

Genetic and molecular analysis of an allelic series of cop1 mutants suggests functional roles for the multiple protein domains.

Timothy McNellis et al.Apr 1, 1994
The Arabidopsis protein COP1, encoded by the constitutive photomorphogenic locus 1, is an essential regulatory molecule that plays a role in the repression of photomorphogenic development in darkness and in the ability of light-grown plants to respond to photoperiod, end-of-day far-red treatment, and ratio of red/far-red light. The COP1 protein contains three recognizable structural domains: starting from the N terminus, they are the zinc binding motif, the putative coiled-coil region, and the domain with multiple WD-40 repeats homologous to the beta subunit of trimeric G-proteins (G beta). To understand the functional implications of these structural motifs, 17 recessive mutations of the COP1 gene have been isolated based on their constitutive photomorphogenic seedling development in darkness. These mutations define three phenotypic classes: weak, strong, and lethal. The mutations that fall into the lethal class are possible null mutations of COP1. Molecular analysis of the nine mutant alleles that accumulated mutated forms of COP1 protein revealed that disruption of the G beta-protein homology domain or removal of the very C-terminal 56 amino acids are both deleterious to COP1 function. In-frame deletions or insertions of short amino acid stretches between the putative coiled-coil and G beta-protein homology domains strongly compromised COP1 function. However, a mutation resulting in a COP1 protein with only the N-terminal 282 amino acids, including both the zinc binding and the coiled-coil domains, produced a weak phenotypic defect. These results indicated that the N-terminal half of COP1 alone retains some activity and a disrupted C-terminal domain masks this remaining activity.
0
Citation394
0
Save
0

The TFL1 homologue KSN is a regulator of continuous flowering in rose and strawberry

Hikaru Iwata et al.Sep 6, 2011
Summary Flowering is a key event in plant life, and is finely tuned by environmental and endogenous signals to adapt to different environments. In horticulture, continuous flowering (CF) is a popular trait introduced in a wide range of cultivated varieties. It played an essential role in the tremendous success of modern roses and woodland strawberries in gardens. CF genotypes flower during all favourable seasons, whereas once‐flowering (OF) genotypes only flower in spring. Here we show that in rose and strawberry continuous flowering is controlled by orthologous genes of the TERMINAL FLOWER 1 ( TFL1 ) family. In rose, six independent pairs of CF/OF mutants differ in the presence of a retrotransposon in the second intron of the TFL1 homologue. Because of an insertion of the retrotransposon, transcription of the gene is blocked in CF roses and the absence of the floral repressor provokes continuous blooming. In OF‐climbing mutants, the retrotransposon has recombined to give an allele bearing only the long terminal repeat element, thus restoring a functional allele. In OF roses, seasonal regulation of the TFL1 homologue may explain the seasonal flowering, with low expression in spring to allow the first bloom. In woodland strawberry, Fragaria vesca , a 2‐bp deletion in the coding region of the TFL1 homologue introduces a frame shift and is responsible for CF behaviour. A diversity analysis has revealed that this deletion is always associated with the CF phenotype. Our results demonstrate a new role of TFL1 in perennial plants in maintaining vegetative growth and modifying flowering seasonality.
0
Citation256
0
Save
0

BRANCHED1 Interacts with FLOWERING LOCUS T to Repress the Floral Transition of the Axillary Meristems inArabidopsis

Masako Niwa et al.Apr 1, 2013
Abstract Plant architecture shows a large degree of developmental plasticity. Some of the key determinants are the timing of the floral transition induced by a systemic flowering signal (florigen) and the branching pattern regulated by key factors such as BRANCHED1 (BRC1). Here, we report that BRC1 interacts with the florigen proteins FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) but not with TERMINAL FLOWER1, a floral repressor. FT protein induced in leaves moves into the subtended bud, suggesting that FT protein also plays a role in promotion of the floral transition in the axillary meristem (AM). The brc1-2 mutant shows an earlier floral transition in the axillary shoots compared with the wild type, suggesting that BRC1 plays a role in delaying the floral transition of the AMs. Genetic and gene expression analyses suggest that BRC1 interferes with florigen (FT and TSF) function in the AMs. Consistent with this, BRC1 ectopically expressed in the shoot apical meristem delays the floral transition in the main shoot. These results taken together suggest that BRC1 protein interacts with FT and TSF proteins and modulates florigen activity in the axillary buds to prevent premature floral transition of the AMs.
0
Citation207
0
Save
Load More