Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
MF
Matteo Frigo
Author with expertise in Diffusion Magnetic Resonance Imaging
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
8
h-index:
8
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
20

On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: chronicles of the MEMENTO challenge

Alberto Luca et al.Mar 2, 2021
Abstract Diffusion MRI (dMRI) has become an invaluable tool to assess the microstructural organization of brain tissue. Depending on the specific acquisition settings, the dMRI signal encodes specific properties of the underlying diffusion process. In the last two decades, several signal representations have been proposed to fit the dMRI signal and decode such properties. Most methods, however, are tested and developed on a limited amount of data, and their applicability to other acquisition schemes remains unknown. With this work, we aimed to shed light on the generalizability of existing dMRI signal representations to different diffusion encoding parameters and brain tissue types. To this end, we organized a community challenge - named MEMENTO, making available the same datasets for fair comparisons across algorithms and techniques. We considered two state-of-the-art diffusion datasets, including single-diffusion-encoding (SDE) spin-echo data from a human brain with over 3820 unique diffusion weightings (the MASSIVE dataset), and double (oscillating) diffusion encoding data (DDE/DODE) of a mouse brain including over 2520 unique data points. A subset of the data sampled in 5 different voxels was openly distributed, and the challenge participants were asked to predict the remaining part of the data. After one year, eight participant teams submitted a total of 80 signal fits. For each submission, we evaluated the mean squared error, the variance of the prediction error and the Bayesian information criteria. Most predictions predicted either multi-shell SDE data (37%) or DODE data (22%), followed by cartesian SDE data (19%) and DDE (18%). Most submissions predicted the signals measured with SDE remarkably well, with the exception of low and very strong diffusion weightings. The prediction of DDE and DODE data seemed more challenging, likely because none of the submissions explicitly accounted for diffusion time and frequency. Next to the choice of the model, decisions on fit procedure and hyperparameters play a major role in the prediction performance, highlighting the importance of optimizing and reporting such choices. This work is a community effort to highlight strength and limitations of the field at representing dMRI acquired with trending encoding schemes, gaining insights into how different models generalize to different tissue types and fiber configurations over a large range of diffusion encodings.
0

Tractography Reproducibility Challenge with Empirical Data (TraCED): The 2017 ISMRM Diffusion Study Group Challenge

Vishwesh Nath et al.Dec 3, 2018
Purpose: Fiber tracking with diffusion weighted magnetic resonance imaging has become an essential tool for estimating in vivo brain white matter architecture. Fiber tracking results are sensitive to the choice of processing method and tracking criteria. Phantom studies provide concrete quantitative comparisons of methods relative to absolute ground truths, yet do not capture variabilities because of in vivo physiological factors. Methods: To date, a large-scale reproducibility analysis has not been performed for the assessment of the newest generation of tractography algorithms with in vivo data. Reproducibility does not assess the validity of a brain connection however it is still of critical importance because it describes the variability for an algorithm in group studies. The ISMRM 2017 TraCED challenge was created to fulfill the gap. The TraCED dataset consists of a single healthy volunteer scanned on two different scanners of the same manufacturer. The multi-shell acquisition included b-values of 1000, 2000 and 3000 s/mm2 with 20, 45 and 64 diffusion gradient directions per shell, respectively. Results: Nine international groups submitted 46 tractography algorithm entries. The top five submissions had high ICC > 0.88. Reproducibility is high within these top 5 submissions when assessed across sessions or across scanners. However, it can be directly attributed to containment of smaller volume tracts in larger volume tracts. This holds true for the top five submissions where they are contained in a specific order. While most algorithms are contained in an ordering there are some outliers. Conclusion: The different methods clearly result in fundamentally different tract structures at the more conservative specificity choices (i.e., volumetrically smaller tractograms). The data and challenge infrastructure remain available for continued analysis and provide a platform for comparison.
8

Network alignment and similarity reveal atlas-based topological differences in structural connectomes

Matteo Frigo et al.Dec 16, 2020
ABSTRACT The interactions between different brain regions can be modeled as a graph, called connectome, whose nodes correspond to parcels from a predefined brain atlas. The edges of the graph encode the strength of the axonal connectivity between regions of the atlas which can be estimated via diffusion Magnetic Resonance Imaging (MRI) tractography. Herein, we aim at providing a novel perspective on the problem of choosing a suitable atlas for structural connectivity studies by assessing how robustly an atlas captures the network topology across different subjects in a homogeneous cohort. We measure this robustness by assessing the alignability of the connectomes, namely the possibility to retrieve graph matchings that provide highly similar graphs. We introduce two novel concepts. First, the graph Jaccard index (GJI), a graph similarity measure based on the well-established Jaccard index between sets; the GJI exhibits natural mathematical properties that are not satisfied by previous approaches. Second, we devise WL-align, a new technique for aligning connectomes obtained by adapting the Weisfeiler-Lehman (WL) graph-isomorphism test. We validated the GJI and WL-align on data from the Human Connectome Project database, inferring a strategy for choosing a suitable parcellation for structural connectivity studies. Code and data are publicly available. AUTHOR SUMMARY An important part of our current understanding of the structure of the human brain relies on the concept of brain network, which is obtained by looking at how different brain regions are connected with each other. In this paper we present a strategy for choosing a suitable parcellation of the brain for structural connectivity studies by making use of the concepts of network alignment and similarity. To do so, we design a novel similarity measure between weighted networks called graph Jaccard index, and a new network alignment technique called WL-align. By assessing the possibility to retrieve graph matchings that provide highly similar graphs, we show that morphology- and structure-based atlases define brain networks which are more topologically robust across a wide range of resolutions.