Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
SS
Stephen Smith
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(77% Open Access)
Cited by:
2,372
h-index:
41
/
i10-index:
115
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Maternal Immune Activation Alters Fetal Brain Development through Interleukin-6

Stephen Smith et al.Oct 3, 2007
Schizophrenia and autism are thought to result from the interaction between a susceptibility genotype and environmental risk factors. The offspring of women who experience infection while pregnant have an increased risk for these disorders. Maternal immune activation (MIA) in pregnant rodents produces offspring with abnormalities in behavior, histology, and gene expression that are reminiscent of schizophrenia and autism, making MIA a useful model of the disorders. However, the mechanism by which MIA causes long-term behavioral deficits in the offspring is unknown. Here we show that the cytokine interleukin-6 (IL-6) is critical for mediating the behavioral and transcriptional changes in the offspring. A single maternal injection of IL-6 on day 12.5 of mouse pregnancy causes prepulse inhibition (PPI) and latent inhibition (LI) deficits in the adult offspring. Moreover, coadministration of an anti-IL-6 antibody in the poly(I:C) model of MIA prevents the PPI, LI, and exploratory and social deficits caused by poly(I:C) and normalizes the associated changes in gene expression in the brains of adult offspring. Finally, MIA in IL-6 knock-out mice does not result in several of the behavioral changes seen in the offspring of wild-type mice after MIA. The identification of IL-6 as a key intermediary should aid in the molecular dissection of the pathways whereby MIA alters fetal brain development, which can shed new light on the pathophysiological mechanisms that predispose to schizophrenia and autism.
0
Citation1,490
0
Save
0

Microdeletion/duplication at 15q13.2q13.3 among individuals with features of autism and other neuropsychiatric disorders

David Miller et al.Sep 19, 2008

Background:

 Segmental duplications at breakpoints (BP4–BP5) of chromosome 15q13.2q13.3 mediate a recurrent genomic imbalance syndrome associated with mental retardation, epilepsy, and/or electroencephalogram (EEG) abnormalities. 

Patients:

 DNA samples from 1445 unrelated patients submitted consecutively for clinical array comparative genomic hybridisation (CGH) testing at Children’s Hospital Boston and DNA samples from 1441 individuals with autism from 751 families in the Autism Genetic Resource Exchange (AGRE) repository. 

Results:

 We report the clinical features of five patients with a BP4–BP5 deletion, three with a BP4–BP5 duplication, and two with an overlapping but smaller duplication identified by whole genome high resolution oligonucleotide array CGH. These BP4–BP5 deletion cases exhibit minor dysmorphic features, significant expressive language deficits, and a spectrum of neuropsychiatric impairments that include autism spectrum disorder, attention deficit hyperactivity disorder, anxiety disorder, and mood disorder. Cognitive impairment varied from moderate mental retardation to normal IQ with learning disability. BP4–BP5 covers ∼1.5 Mb (chr15:28.719–30.298 Mb) and includes six reference genes and 1 miRNA gene, while the smaller duplications cover ∼500 kb (chr15:28.902–29.404 Mb) and contain three reference genes and one miRNA gene. The BP4–BP5 deletion and duplication events span CHRNA7, a candidate gene for seizures. However, none of these individuals reported here have epilepsy, although two have an abnormal EEG. 

Conclusions:

 The phenotype of chromosome 15q13.2q13.3 BP4–BP5 microdeletion/duplication syndrome may include features of autism spectrum disorder, a variety of neuropsychiatric disorders, and cognitive impairment. Recognition of this broader phenotype has implications for clinical diagnostic testing and efforts to understand the underlying aetiology of this syndrome.
0
Citation337
0
Save
0

Increased Gene Dosage of Ube3a Results in Autism Traits and Decreased Glutamate Synaptic Transmission in Mice

Stephen Smith et al.Oct 5, 2011
People with autism spectrum disorder are characterized by impaired social interaction, reduced communication, and increased repetitive behaviors. The disorder has a substantial genetic component, and recent studies have revealed frequent genome copy number variations (CNVs) in some individuals. A common CNV that occurs in 1 to 3% of those with autism--maternal 15q11-13 duplication (dup15) and triplication (isodicentric extranumerary chromosome, idic15)--affects several genes that have been suggested to underlie autism behavioral traits. To test this, we tripled the dosage of one of these genes, the ubiquitin protein ligase Ube3a, which is expressed solely from the maternal allele in mature neurons, and reconstituted the three core autism traits in mice: defective social interaction, impaired communication, and increased repetitive stereotypic behavior. The penetrance of these autism traits depended on Ube3a gene copy number. In animals with increased Ube3a gene dosage, glutamatergic, but not GABAergic, synaptic transmission was suppressed as a result of reduced presynaptic release probability, synaptic glutamate concentration, and postsynaptic action potential coupling. These results suggest that Ube3a gene dosage may contribute to the autism traits of individuals with maternal 15q11-13 duplication and support the idea that increased E3A ubiquitin ligase gene dosage results in reduced excitatory synaptic transmission.
0
Citation259
0
Save
8

Suppression of PIK3CA-driven epileptiform activity by acute pathway control

Achira Roy et al.Mar 4, 2021
ABSTRACT Patients harboring mutations in the PI3K-AKT-MTOR signaling pathway often develop a spectrum of neurodevelopmental disorders including epilepsy. A significant proportion of them remain unresponsive to conventional anti-seizure medications. Understanding mutation-specific pathophysiology is thus critical for molecularly targeted therapies. We previously determined that mouse models expressing patient-related activating mutation in PIK3CA are epileptic and acutely treatable with PI3K inhibition, irrespective of dysmorphology (Roy et al. 2015). Using the same mutant model, we have now identified physiological mechanisms underlying the dysregulated neuronal excitability and its acute attenuation. We show that Pik3ca-driven hyperexcitability in hippocampal pyramidal neurons is mediated by changes in multiple non-synaptic, cell-intrinsic properties. These are distinct from mechanisms driving epilepsy in TSC/RHEB models. Further, we report that acute inhibition of PI3K or AKT, but not MTOR, suppresses the intrinsic epileptiform nature of the mutant neurons. These data represent an important step towards precision therapeutics against intractable epilepsy, using pathway drugs originally developed as anti-cancer agents.
8
Citation4
0
Save
0

Activity-dependent changes in synaptic protein complex composition are consistent in different detergents despite differential solubility

Jonathan Lautz et al.Mar 12, 2019
At the post-synaptic density (PSD), large protein complexes dynamically form and dissociate in response to synaptic activity, comprising the biophysical basis for learning and memory. The use of detergents to both isolate the PSD fraction and release its membrane-associated proteins complicates studies of these activity-dependent protein interaction networks, because detergents can simultaneously disrupt the very interactions under study. Despite widespread recognition that different detergents yield different experimental results, the effect of detergent on activity-dependent synaptic protein complexes has not been rigorously examined. Here, we characterize the effect of three detergents commonly used to study synaptic proteins on activity-dependent protein interactions. We first demonstrate that SynGAP-containing interactions are more abundant in 1% Deoxycholate (DOC), while Shank-, Homer- and mGluR5-containing interactions are more abundant in 1% NP-40 or Triton. All interactions were detected preferentially in high molecular weight (HMW) complexes generated by size exclusion chromatography, although the detergent-specific abundance of proteins in HMW fractions did not correlate with the abundance of detected interactions. Activity-dependent changes in protein complexes were consistent across detergent types, suggesting that detergents do not isolate distinct protein pools with unique behaviors. However, detection of activity-dependent changes is more or less feasible in different detergents due to baseline solubility. Collectively, our results demonstrate that detergents affect the solubility of individual proteins, but activity-dependent changes in protein interactions, when detectable, are consistent across detergent types.
1

Protein interaction network analysis of mTOR signaling reveals modular organization

Devin Wehle et al.Aug 4, 2023
The mammalian target of rapamycin (mTOR) is a serine-threonine kinase that acts as a central mediator of translation, and plays important roles in cell growth, synaptic plasticity, cancer, and a wide range of developmental disorders. The signaling cascade linking lipid kinases (PI3Ks), protein kinases (AKT) and translation initiation complexes (EIFs) to mTOR has been extensively modeled, but does not fully describe mTOR system behavior. Here, we use quantitative multiplex co-immunoprecipitation to monitor a protein interaction network (PIN) composed of 300+ binary interactions among mTOR-related proteins. Using a simple model system of serum deprived or fresh-media-fed mouse 3T3 fibroblasts, we observed extensive PIN remodeling involving 27+ individual protein interactions after one hour, despite phosphorylation changes observed after only five minutes. Using small molecule inhibitors of PI3K, AKT, mTOR, MEK and ERK, we define subsets of the PIN, termed 'modules', that respond differently to each inhibitor. Using primary fibroblasts from individuals with overgrowth disorders caused by pathogenic PIK3CA or MTOR variants, we find that hyperactivation of mTOR pathway components is reflected in a hyperactive PIN. Our data define a "modular" organization of the mTOR PIN in which coordinated groups of interactions respond to activation or inhibition of distinct nodes, and demonstrate that kinase inhibitors affect the modular network architecture in a complex manner, inconsistent with simple linear models of signal transduction.
Load More