HR
Hervé Rouault
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
734
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

On the mechanism of wing size determination in fly development

Lars Hufnagel et al.Mar 1, 2007
+2
H
A
L
A fundamental and unresolved problem in animal development is the question of how a growing tissue knows when it has achieved its correct final size. A widely held view suggests that this process is controlled by morphogen gradients, which adapt to tissue size and become flatter as tissue grows, leading eventually to growth arrest. Here, we present evidence that the decapentaplegic (Dpp) morphogen distribution in the developing Drosophila wing imaginal disk does not adapt to disk size. We measure the distribution of a functional Dpp-GFP transgene and the Dpp signal transduced by phospho-Mad and show that the characteristic length scale of the Dpp profile remains approximately constant during growth. This finding suggests an alternative scenario of size determination, where disk size is determined relative to the fixed morphogen distribution by a certain threshold level of morphogen required for growth. We propose that when disk boundary reaches the threshold the arrest of cell proliferation throughout the disk is induced by mechanical stress in the tissue. Mechanical stress is expected to arise from the nonuniformity of morphogen distribution that drives growth. This stress, through a negative feedback on growth, can compensate for the nonuniformity of morphogen, achieving uniform growth with the rate that vanishes when disk boundary reaches the threshold. The mechanism is demonstrated through computer simulations of a tissue growth model that identifies the key assumptions and testable predictions. This analysis provides an alternative hypothesis for the size determination process. Novel experimental approaches will be needed to test this model.
0
Citation369
0
Save
0

Ring attractor dynamics in the Drosophila central brain

Sung Kim et al.May 5, 2017
V
S
H
S
Representing direction in the fly A population of cells called compass neurons represents a fruitfly's heading direction. Kim et al. used imaging and optogenetics in behaving flies to elucidate the functional architecture of the underlying neuronal network. They observed local excitation and global inhibition between the compass neurons. The features of the network were best explained by a ring attractor network model. Until now, this hypothesized network structure has been difficult to demonstrate in a real brain. Science , this issue p. 849
0
Citation361
0
Save
18

The rapid developmental rise of somatic inhibition disengages hippocampal dynamics from self-motion

Robin Dard et al.Jun 9, 2021
+12
J
E
R
ABSTRACT Early electrophysiological brain oscillations recorded in preterm babies and newborn rodents are initially mostly ignited by bottom-up sensorimotor activity and only later can detach from external inputs. This is a hallmark of most developing brain areas including the hippocampus, which in the adult brain, functions in integrating external inputs onto internal dynamics. Such developmental disengagement from external inputs is likely a fundamental step for the proper development of cognitive internal models. Despite its importance, the developmental timeline and circuit basis for this disengagement remain unknown. To address this issue, we have investigated the daily evolution of CA1 dynamics and underlying circuits during the first two postnatal weeks of mouse development using two-photon calcium imaging in non-anesthetized pups. We show that the first postnatal week ends with an abrupt shift in the representation of self-motion in CA1. Indeed, most CA1 pyramidal cells switch from activated to inhibited by self-generated movements at the end of the first postnatal week whereas the majority of GABAergic neurons remain positively modulated throughout this period. This rapid switch occurs within two days and follows the rapid anatomical and functional surge of local somatic GABAergic innervation. The observed change in dynamics is consistent with a two-population model undergoing a strengthening of inhibition. We propose that this abrupt developmental transition inaugurates the emergence of internal cognitive models.
0

Dynamic control of cortical head-direction signal by angular velocity

Arseny Finkelstein et al.Aug 8, 2019
N
S
H
A
The sense of direction requires accurate tracking of head direction at different turning-velocities, yet it remains unclear how this is achieved in the mammalian brain. Here we recorded head-direction cells in bat dorsal presubiculum and found that, surprisingly, the head-direction signal in this cortical region was dynamically controlled by angular velocity. In most neurons, a sharp head-direction tuning emerged at some angular velocity, but was absent at other velocities - resulting in a 4-fold increase in head-direction cell abundance. The head-direction tuning changed as a function of angular velocity primarily via a redistribution of spikes between the neuron's preferred and null directions - while keeping the average firing-rate constant. These results could not be explained by existing 'ring-attractor' models of the head-direction system. We propose a novel recurrent network model that accounts for the observed dynamics of head-direction cells. This model predicts that the new classes of cells we found can improve the sensitivity of the head-direction system to directional sensory cues, and support angular-velocity integration.
32

Flexible specificity of memory in Drosophila depends on a comparison between choices

Mehrab Modi et al.May 26, 2022
+2
H
A
M
Abstract Memory guides behavior across widely varying environments and must therefore be both sufficiently specific and general. A memory too specific will be useless in even a slightly different environment, while an overly general memory may lead to suboptimal choices. Animals successfully learn to both distinguish between very similar stimuli and generalize across cues. Rather than forming memories that strike a balance between specificity and generality, Drosophila can flexibly categorize a given stimulus into different groups depending on the options available. We asked how this flexibility manifests itself in the well-characterized learning and memory pathways of the fruit fly. We show that flexible categorization in neuronal activity as well as behavior depends on the order and identity of the perceived stimuli. Our results identify the neural correlates of flexible stimulus-categorization in the fruit fly. Impact Statement Flies can optimally recall a memory with high specificity by comparing options close in time, or default to generalization when they cannot.