VV
Vilhelm Verendel
Author with expertise in Ribosome Structure and Translation Mechanisms
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
3
h-index:
13
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
80

Supervised generative design of regulatory DNA for gene expression control

Jan Zrimec et al.Jul 15, 2021
+11
A
X
J
Abstract In order to control gene expression, regulatory DNA variants are commonly designed using random synthetic approaches with mutagenesis and screening. This however limits the size of the designed DNA to span merely a part of a single regulatory region, whereas the whole gene regulatory structure including the coding and adjacent non-coding regions is involved in controlling gene expression. Here, we prototype a deep neural network strategy that models whole gene regulatory structures and generates de novo functional regulatory DNA with prespecified expression levels. By learning directly from natural genomic data, without the need for large synthetic DNA libraries, our ExpressionGAN can traverse the whole sequence-expression landscape to produce sequence variants with target mRNA levels as well as natural-like properties, including over 30% dissimilarity to any natural sequence. We experimentally demonstrate that this generative strategy is more efficient than a mutational one when using purely natural genomic data, as 57% of the newly-generated highly-expressed sequences surpass the expression levels of natural controls. We foresee this as a lucrative strategy to expand our knowledge of gene expression regulation as well as increase expression control in any desired organism for synthetic biology and metabolic engineering applications.
80
Citation3
0
Save
0

Gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure

Jan Zrimec et al.Oct 4, 2019
+4
A
F
J
Understanding the genetic regulatory code that governs gene expression is a primary, yet challenging aspiration in molecular biology that opens up possibilities to cure human diseases and solve biotechnology problems. However, the fundamental question of how each of the individual coding and non-coding regions of the gene regulatory structure interact and contribute to the mRNA expression levels remains unanswered. Considering that all the information for gene expression regulation is already present in living cells, here we applied deep learning on over 20,000 mRNA datasets in 7 model organisms ranging from bacteria to Human. We show that in all organisms, mRNA abundance can be predicted directly from the DNA sequence with high accuracy, demonstrating that up to 82% of the variation of gene expression levels is encoded in the gene regulatory structure. Coding and non-coding regions carry both overlapping and orthogonal information and additively contribute to gene expression levels. By searching for DNA regulatory motifs present across the whole gene regulatory structure, we discover that motif interactions can regulate gene expression levels in a range of over three orders of magnitude. The uncovered co-evolution of coding and non-coding regions challenges the current paradigm that single motifs or regions are solely responsible for gene expression levels. Instead, we show that the correct combination of all regulatory regions must be established in order to accurately control gene expression levels. Therefore, the holistic system that spans the entire gene regulatory structure is required to analyse, understand, and design any future gene expression systems.