AP
Ariel Pani
Author with expertise in Molecular Mechanisms of Aging and Longevity
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(91% Open Access)
Cited by:
1,106
h-index:
18
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Streamlined Genome Engineering with a Self-Excising Drug Selection Cassette

Daniel Dickinson et al.Jun 3, 2015
A central goal in the development of genome engineering technology is to reduce the time and labor required to produce custom genome modifications. Here we describe a new selection strategy for producing fluorescent protein (FP) knock-ins using CRISPR/Cas9-triggered homologous recombination. We have tested our approach in Caenorhabditis elegans. This approach has been designed to minimize hands-on labor at each step of the procedure. Central to our strategy is a newly developed self-excising cassette (SEC) for drug selection. SEC consists of three parts: a drug-resistance gene, a visible phenotypic marker, and an inducible Cre recombinase. SEC is flanked by LoxP sites and placed within a synthetic intron of a fluorescent protein tag, resulting in an FP–SEC module that can be inserted into any C. elegans gene. Upon heat shock, SEC excises itself from the genome, leaving no exogenous sequences outside the fluorescent protein tag. With our approach, one can generate knock-in alleles in any genetic background, with no PCR screening required and without the need for a second injection step to remove the selectable marker. Moreover, this strategy makes it possible to produce a fluorescent protein fusion, a transcriptional reporter and a strong loss-of-function allele for any gene of interest in a single injection step.
0
Citation632
0
Save
0

Hemichordate genomes and deuterostome origins

Oleg Simakov et al.Nov 1, 2015
Acorn worms, also known as enteropneust (literally, 'gut-breathing') hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal 'gill' slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor.
0
Citation238
0
Save
27

Dynamic compartmentalization of the pro-invasive transcription factor NHR-67 reveals a role for Groucho in regulating a proliferative-invasive cellular switch inC. elegans

Taylor Medwig-Kinney et al.Oct 1, 2022
Abstract A growing body of evidence suggests that cell division and basement membrane invasion are mutually exclusive cellular behaviors. How cells switch between proliferative and invasive states is not well understood. Here, we investigated this dichotomy in vivo by examining two cell types in the developing Caenorhabditis elegans somatic gonad that derive from equipotent progenitors, but exhibit distinct cell behaviors: the post-mitotic, invasive anchor cell and the neighboring proliferative, non-invasive ventral uterine (VU) cells. We show that the fates of these cells post-specification are more plastic than previously appreciated and that levels of NHR-67 are important for discriminating between invasive and proliferative behavior. Transcription of nhr-67 is downregulated following post-translational degradation of its direct upstream regulator, HLH-2 (E/Daughterless) in VU cells. In the nuclei of VU cells, residual NHR-67 protein is compartmentalized into discrete punctae that are dynamic over the cell cycle and exhibit liquid-like properties. By screening for proteins that colocalize with NHR-67 punctae, we identified new regulators of uterine cell fate maintenance: homologs of the transcriptional co-repressor Groucho (UNC-37 and LSY-22), as well as the TCF/LEF homolog POP-1. We propose a model in which association of NHR-67 with the Groucho/TCF complex suppresses the default invasive state in non-invasive cells, which complements transcriptional regulation to add robustness to the proliferative-invasive cellular switch in vivo .
27
Citation1
0
Save
0

Microtubule re-organization during female meiosis in C. elegans

Ina Lantzsch et al.May 15, 2020
Abstract The female meiotic spindles of most animals are acentrosomal and undergo striking morphological changes while transitioning from metaphase to anaphase. The ultra-structure of acentrosomal spindles, and how changes to this structure correlate with such dramatic spindle rearrangements remains largely unknown. To address this, we applied light microscopy, large-scale electron tomography and mathematical modeling of female meiotic C. elegans spindles undergoing the transition from metaphase to anaphase. Combining these approaches, we find that meiotic spindles are dynamic arrays of short microtubules that turn over on second time scales. The results show that the transition from metaphase to anaphase correlates with an increase in the number of microtubules and a decrease in their average length. Detailed analysis of the tomographic data revealed that the length of microtubules changes significantly during the metaphase-to-anaphase transition. This effect is most pronounced for those microtubules located within 150 nm of the chromosome surface. To understand the mechanisms that drive this transition, we developed a mathematical model for the microtubule length distribution that considers microtubule growth, catastrophe, and severing. Using Bayesian inference to compare model predictions and data, we find that microtubule turn-over is the major driver of the observed large-scale reorganizations. Our data suggest that in metaphase only a minor fraction of microtubules, those that are closest to the chromosomes, are severed. The large majority of microtubules, which are not in close contact with chromosomes, do not undergo severing. Instead, their length distribution is fully explained by growth and catastrophe alone. In anaphase, even microtubules close to the chromosomes show no signs of cutting. This suggests that the most prominent drivers of spindle rearrangements from metaphase to anaphase are changes in nucleation and catastrophe rate. In addition, we provide evidence that microtubule severing is dependent on the presence of katanin.
0
Citation1
0
Save
26

Molecular characterization of nervous system organization in the hemichordateSaccoglossus kowalevskii

Jose Lopez et al.Jan 3, 2023
Abstract Hemichordates are an important group for investigating the evolution of bilaterian nervous systems. As the closest chordate outgroup with a bilaterally symmetric adult body plan, hemichordates are particularly informative for exploring the origins of chordates. Despite the importance of hemichordate neuroanatomy for testing hypotheses on deuterostome and chordate evolution, adult hemichordate nervous systems have not been comprehensively described using molecular techniques, and classic histological descriptions disagree on basic aspects of nervous system organization. A molecular description of hemichordate nervous system organization is important for both anatomical comparisons across phyla and for attempts to understand how conserved gene regulatory programs for ectodermal patterning relate to morphological evolution in deep time. Here, we describe the basic organization of the adult hemichordate Saccoglossus kowalevskii nervous system using immunofluorescence, in situ hybridization, and transgenic reporters to visualize neurons, neuropil, and key neuronal cell types. Consistent with previous descriptions, we found the S. kowalevskii nervous system consists of a pervasive nerve plexus that is concentrated in the anterior, along with nerve cords on both the dorsal and ventral sides. Neuronal cell types exhibited clear anteroposterior and dorsoventral regionalization in multiple areas of the body. We observed spatially demarcated expression patterns for many genes involved in synthesis or transport of neurotransmitters and neuropeptides but did not observe clear distinctions between putatively centralized and decentralized portions of the nervous system. In the trunk, there is a clear division of cell types between the dorsal and ventral cords suggesting differences in function. The plexus shows regionalized structure and is consistent with the proboscis base as a major site for information processing rather than the dorsal nerve cord. The absence of neural processes crossing the basement membrane into muscle and extensive axonal varicosities suggest that volumetric transmission may play an important role in neural function. These data now facilitate more informed neural comparisons between hemichordates and other groups and contribute to broader debates on the origins and evolution of bilaterian nervous systems.
1

A simple method to dramatically increaseC. elegansgermline microinjection efficiency

Theresa Gibney et al.Mar 25, 2023
Abstract Genome manipulation methods in C. elegans require microinjecting DNA or ribonucleoprotein complexes into the microscopic core of the gonadal syncytium. These microinjections are technically demanding and represent a key bottleneck for all genome engineering and transgenic approaches in C. elegans . While there have been steady improvements in the ease and efficiency of genetic methods for C. elegans genome manipulation, there have not been comparable advances in the physical process of microinjection. Here, we report a simple and inexpensive method for handling worms using a paintbrush during the injection process that nearly tripled average microinjection rates compared to traditional worm handling methods. We found that the paintbrush increased injection throughput by substantially increasing both injection speeds and post-injection survival rates. In addition to dramatically and universally increasing injection efficiency for experienced personnel, the paintbrush method also significantly improved the abilities of novice investigators to perform key steps in the microinjection process. We expect that this method will benefit the C. elegans community by increasing the speed at which new strains can be generated and will also make microinjection-based approaches less challenging and more accessible to personnel and labs without extensive experience.
4

Long-distance Wnt transport in axons highlights cell type-specific modes of Wnt transportin vivo

Ariel Pani et al.May 4, 2023
Abstract Wnt signaling performs critical functions in development, homeostasis, and disease states. Wnt ligands are secreted signaling proteins that often move between cells to activate signaling across a range of distances and concentrations. In different animals and developmental contexts, Wnts utilize distinct mechanisms for intercellular transport including diffusion, cytonemes and exosomes [1]. Mechanisms for intercellular Wnt dispersal remain controversial in part due to technical challenges with visualizing endogenous Wnt proteins in vivo , which has limited our understanding of Wnt transport dynamics. As a result, the cell-biological bases for long-range Wnt dispersal remain unknown in most instances, and the extent to which differences in Wnt transport mechanisms vary by cell type, organism, and/or ligand remain uncertain. To investigate processes underlying long-range Wnt transport in vivo , we utilized C. elegans as an experimentally tractable model where it is possible to tag endogenous Wnts with fluorescent proteins without disrupting signaling [2]. Live imaging of two endogenously tagged Wnt homologs revealed a novel mode for long-distance Wnt movement in axon-like structures that may complement Wnt gradients generated by diffusion and highlighted cell type-specific Wnt transport processes in vivo .
0

Comparative assessment of fluorescent proteins for in vivo imaging in an animal model system

Jennifer Heppert et al.Feb 19, 2016
Fluorescent protein tags are fundamental tools used to visualize gene products and analyze their dynamics in vivo. Recent advances in genome editing have enabled precise insertion of fluorescent protein tags into the genomes of diverse organisms. These advances expand the potential of in vivo imaging experiments, and they facilitate experimentation with new, bright, photostable fluorescent proteins. Most quantitative comparisons of the brightness and photostability of different fluorescent proteins have been made in vitro, removed from biological variables that govern their performance in cells or organisms. To address the gap we quantitatively assessed fluorescent protein properties in vivo in an animal model system. We generated transgenic C. elegans strains expressing green, yellow, or red fluorescent proteins in embryos, and we imaged embryos expressing different fluorescent proteins under the same conditions for direct comparison. We found that mNeonGreen was not bright in vivo as predicted based on in vitro data, but that mNeonGreen is a better tag than GFP for specific kinds of experiments, and we report on optimal red fluorescent proteins. These results identify ideal fluorescent proteins for imaging in vivo in C. elegans embryos, and they suggest good candidate fluorescent proteins to test in other animal model systems.
Load More