NR
Nakul Raval
Author with expertise in Pathophysiology of Parkinson's Disease
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
118
h-index:
8
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
20

A Single Dose of Psilocybin Increases Synaptic Density and Decreases 5-HT2A Receptor Density in the Pig Brain

Nakul Raval et al.Jan 15, 2021
+4
L
A
N
A single dose of psilocybin, a psychedelic and serotonin 2A receptor (5-HT2AR) agonist, may be associated with antidepressant effects. The mechanism behind its antidepressive action is unknown but could be linked to increased synaptogenesis and down-regulation of cerebral 5-HT2AR. Here, we investigate if a single psychedelic dose of psilocybin changes synaptic vesicle protein 2A (SV2A) and 5-HT2AR density in the pig brain. Twenty-four awake pigs received either 0.08 mg/kg psilocybin or saline intravenously. Twelve pigs (n = 6/intervention) were euthanized one day post-injection, while the remaining twelve pigs were euthanized seven days post-injection (n = 6/intervention). We performed autoradiography on hippocampus and prefrontal cortex (PFC) sections with [3H]UCB-J (SV2A), [3H]MDL100907 (5-HT2AR antagonist) and [3H]Cimbi-36 (5-HT2AR agonist). One day post psilocybin injection, we observed 4.42% higher hippocampal SV2A density and lowered hippocampal and PFC 5-HT2AR density (-15.21% to -50.19%). These differences were statistically significant in the hippocampus for all radioligands and in the PFC for [3H]Cimbi-36 only. Seven days post-intervention, there was still significantly higher SV2A density in the hippocampus (+9.24%) and the PFC (+6.10%), whereas there were no longer any differences in 5-HT2AR density. Our findings suggest that psilocybin causes increased persistent synaptogenesis and an acute decrease in 5-HT2AR density, which may play a role in psilocybin's antidepressive effects.
20
Citation114
0
Save
4

An in vivo pig model for testing novel PET radioligands targeting cerebral protein aggregates

Nakul Raval et al.Jan 2, 2022
+9
C
A
N
Abstract Positron emission tomography (PET) has become an essential clinical tool for diagnosing neurodegenerative diseases with abnormal accumulation of proteins like amyloid-β or tau. Despite many attempts, it has not been possible to develop an appropriate radioligand for imaging aggregated α-synuclein in the brain for diagnosing, e.g., Parkinson’s Disease. Access to a large animal model with α-synuclein pathology would critically enable a more translationally appropriate evaluation of novel radioligands. We here establish a pig model with cerebral injections of α-synuclein preformed fibrils or brain homogenate from postmortem human brain tissue from individuals with Alzheimer’s disease (AD) or dementia with Lewy body (DLB) into the pig’s brain, using minimally invasive surgery and validated against saline injections. In the absence of a suitable α-synuclein radioligand, we validated the model with the unselective amyloid-β tracer [ 11 C]PIB, which has a high affinity for β-sheet structures in aggregates. Gadolinium-enhanced MRI confirmed that the blood-brain barrier was intact. A few hours post-injection, pigs were PET scanned with [ 11 C]PIB. Quantification was done with Logan invasive graphical analysis and simplified reference tissue model 2 using the occipital cortex as a reference region. After the scan, we retrieved the brains to confirm successful injection using autoradiography and immunohistochemistry. We found four times higher [ 11 C]PIB uptake in AD-homogenate-injected regions and two times higher uptake in regions injected with α-synuclein-preformed-fibrils compared to saline. The [ 11 C]PIB uptake was the same in non-injected (occipital cortex, cerebellum) and injected (DLB-homogenate, saline) regions. With its large brains and ability to undergo repeated PET scans as well as neurosurgical procedures, the pig provides a robust, cost-effective, and good translational model for assessment of novel radioligands including, but not limited to, proteinopathies.
4
Citation2
0
Save
1

Synaptic density and neuronal metabolic function measured by PET in the unilateral 6-OHDA rat model of Parkinson’s disease

Nakul Raval et al.May 28, 2021
+11
M
F
N
Abstract Parkinson’s disease (PD) is caused by progressive neurodegeneration and characterised by motor dysfunction. Neurodegeneration of dopaminergic neurons also causes aberrations within the cortico-striato-thalamo-cortical (CSTC) circuit, which has been hypothesised to lead to non-motor symptoms such as depression. Individuals with PD have both lower synaptic density and changes in neuronal metabolic function in the basal ganglia, as measured using [ 11 C]UCB-J and [ 18 F]FDG positron emission tomography (PET), respectively. However, the two radioligands have not been directly compared in the same PD subject or in neurodegeneration animal models. Here, we investigate [11C]UCB-J binding and [ 18 F]FDG uptake in the CSTC circuit following a unilateral dopaminergic lesion in rats and compare it to sham lesioned rats. Rats received either a unilateral injection of 6-hydroxydopamine (6-OHDA) or saline in the medial forebrain bundle and rostral substantia nigra (n=4/group). After three weeks, all rats underwent two PET scans using [ 18 F]FDG, followed by [ 11 C]UCB-J on a separate day. [ 18 F]FDG uptake and [ 11 C]UCB-J binding were both lower in the ipsilateral striatal regions compared to the contralateral regions. Using [ 11 C]UCB-J, we could detect an 8.7% decrease in the ipsilateral ventral midbrain, compared to a 2.9% decrease in ventral midbrain using [ 18 F]FDG. Differential changes between hemispheres for [ 11 C]UCB-J and [ 18 F]FDG outcomes were also evident in the CSTC circuit’s cortical regions, especially in the orbitofrontal cortex and medial prefrontal cortex where higher synaptic density yet lower neuronal metabolic function was observed, following lesioning. In conclusion, [ 11 C]UCB-J and [ 18 F]FDG PET can detect divergent changes following a dopaminergic lesion in rats, especially in cortical regions that are not directly affected by the neurotoxin. These results suggest that combined [ 11 C]UCB-J and [ 18 F]FDG scans could yield a better picture of the heterogeneous cerebral changes in neurodegenerative disorders.
0

Development of Peptide-Based Probes for Molecular Imaging of the Postsynaptic Density in the Brain

Eduardo Fernandes et al.Jul 9, 2024
+16
S
S
E
The postsynaptic density (PSD) comprises numerous scaffolding proteins, receptors, and signaling molecules that coordinate synaptic transmission in the brain. Postsynaptic density protein 95 (PSD-95) is a master scaffold protein within the PSD and one of its most abundant proteins and therefore constitutes a very attractive biomarker of PSD function and its pathological changes. Here, we exploit a high-affinity inhibitor of PSD-95, AVLX-144, as a template for developing probes for molecular imaging of the PSD. AVLX-144-based probes were labeled with the radioisotopes fluorine-18 and tritium, as well as a fluorescent tag. Tracer binding showed saturable, displaceable, and uneven distribution in rat brain slices, proving effective in quantitative autoradiography and cell imaging studies. Notably, we observed diminished tracer binding in human post-mortem Parkinson's disease (PD) brain slices, suggesting postsynaptic impairment in PD. We thus offer a suite of translational probes for visualizing and understanding PSD-related pathologies.
0
Citation1
0
Save
5

Evaluation of the α-synuclein PET radiotracer (d3)-[11C]MODAG-001 in pigs

Nakul Raval et al.Feb 8, 2022
+9
V
C
N
Abstract Background A positron emission tomography (PET) radiotracer to neuroimage α-synuclein aggregates would be a crucial addition for early diagnosis and treatment development in disorders such as Parkinson’s disease, where elevated aggregate levels is a histopathological hallmark. The radiotracer (d 3 )-[ 11 C]MODAG-001 has recently shown promise for visualization of α-synuclein pre-formed fibrils (α-PFF) in rodents. We here test the radiotracer in a pig model where proteins are intracerebrally injected immediately before scanning. Four pigs were injected in one hemisphere with 150 µg α-PFF, and in the other hemisphere, either 75 µg α-PFF or human brain homogenate from either dementia with Lewy bodies (DLB) or Alzheimer’s disease (AD) was injected. All pigs underwent one or two (d 3 )-[ 11 C]MODAG-001 PET scans, quantified with the non-invasive Logan graphical analysis using the occipital cortex as a reference region. Results The α-PFF and AD homogenate injected brain regions had high uptake of (d 3 )-[ 11 C]MODAG-001 compared to the occipital cortex or cerebellum. BP ND values in 150 µg α-PFF injected regions was 0.78, and in the AD homogenate injected regions was 0.73. By contrast, the DLB homogenate injected region did not differ in uptake and clearance compared to the reference regions. The time-activity curves and BP ND values in the 150 µg and 75 µg injected region of α-PFFs show a dose-dependent effect, and the PET signal could be blocked by pretreatment with unlabeled MODAG-001. Conclusion We find that both α-PFF and AD brain homogenates give rise to increased binding of (d 3 )-[ 11 C]MODAG-001 when injected into the pig brain. Despite its limited specificity for cerebral α-synuclein pathology, (d 3 )-[ 11 C]MODAG-001 shows promise as a lead tracer for future radiotracer development.
3

Kinetic models for PET displacement studies

Gjertrud Laurell et al.Nov 26, 2022
+11
A
P
G
Abstract The traditional design of PET target engagement studies is based on a baseline scan and one or more scans after drug administration. We here evaluate an alternative design in which the drug is administered during an on-going scan (i.e., a displacement study). This approach results both in lower radiation exposure and lower costs. Existing kinetic models assume steady state. This condition is not present during a drug displacement and consequently, our aim here was to develop kinetic models for analysing PET displacement data. We modified existing compartment models to accommodate a time-variant increase in occupancy following the pharmacological in-scan intervention. Since this implies the use of differential equations that cannot be solved analytically, we developed instead one approximate and one numerical solution. Through simulations, we show that if the occupancy is relatively high, it can be estimated without bias and with good accuracy. The models were applied to PET data from six pigs where [ 11 C]UCB-J was displaced by intravenous brivaracetam. The dose-occupancy relationship estimated from these scans showed good agreement with occupancies calculated with Lassen plot applied to baseline-block scans of two pigs. In summary, the proposed models provide a framework to determine target occupancy from a single displacement scan.