BW
Barbara Weber
Author with expertise in Mammalian MAP Kinase Signaling Pathways
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
9,388
h-index:
41
/
i10-index:
65
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

COT drives resistance to RAF inhibition through MAP kinase pathway reactivation

Cory Johannessen et al.Nov 24, 2010
Clinical trials in melanoma patients carrying B-RAF gene mutations have shown promising results with the B-RAF kinase inhibitor PLX4032, but many patients go on to become resistant. Two papers now uncover possible mechanisms for this resistance. Nazarian et al. report that melanomas can acquire resistance due to mutations of N-RAS or increased expression of PDGFRβ, and Johannessen et al. report resistance due to upregulation of MAP3K8/COT. Each of these mechanisms seems to apply to some patients in the recent PLX4032 trial, yet surprisingly, no secondary B-RAF mutations were observed. Recent data from early clinical trials in melanoma patients carrying mutations in the B-RAF gene have shown promising results with the B-RAF kinase inhibitor PLX4032; however, many patients eventually develop resistance to this treatment. Two papers now uncover possible mechanisms of resistance to PLX4032. One paper shows that upregulation of MAP3K8 (which encodes COT) can confer resistance of melanoma cells to B-RAF inhibitors, whereas another paper found that melanomas can acquire resistance due to mutations of N-RAS or increased expression of PDGFRβ. Each of these resistance mechanisms seems to apply to at least some patients on recent PLX4032 trial, whereas, surprisingly, so far no secondary B-RAF mutations have been observed. Oncogenic mutations in the serine/threonine kinase B-RAF (also known as BRAF) are found in 50–70% of malignant melanomas1. Pre-clinical studies have demonstrated that the B-RAF(V600E) mutation predicts a dependency on the mitogen-activated protein kinase (MAPK) signalling cascade in melanoma2,3,4,5,6—an observation that has been validated by the success of RAF and MEK inhibitors in clinical trials7,8,9. However, clinical responses to targeted anticancer therapeutics are frequently confounded by de novo or acquired resistance10,11,12. Identification of resistance mechanisms in a manner that elucidates alternative ‘druggable’ targets may inform effective long-term treatment strategies13. Here we expressed ∼600 kinase and kinase-related open reading frames (ORFs) in parallel to interrogate resistance to a selective RAF kinase inhibitor. We identified MAP3K8 (the gene encoding COT/Tpl2) as a MAPK pathway agonist that drives resistance to RAF inhibition in B-RAF(V600E) cell lines. COT activates ERK primarily through MEK-dependent mechanisms that do not require RAF signalling. Moreover, COT expression is associated with de novo resistance in B-RAF(V600E) cultured cell lines and acquired resistance in melanoma cells and tissue obtained from relapsing patients following treatment with MEK or RAF inhibitors. We further identify combinatorial MAPK pathway inhibition or targeting of COT kinase activity as possible therapeutic strategies for reducing MAPK pathway activation in this setting. Together, these results provide new insights into resistance mechanisms involving the MAPK pathway and articulate an integrative approach through which high-throughput functional screens may inform the development of novel therapeutic strategies.
0
Citation1,409
0
Save
0

Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation.

Richard Wahl et al.Nov 1, 1993
PURPOSE We assessed the feasibility of noninvasive metabolic monitoring of cancer chemohormonotherapy using sequential quantitative positron emission tomographic (PET) scans of tumor glucose metabolism with the glucose analog 2-[18F]-fluoro-2-deoxy-D-glucose (FDG). PATIENTS AND METHODS Eleven women with newly diagnosed primary breast cancers larger than 3 cm in diameter beginning a chemohormonotherapy program underwent a baseline and four follow-up quantitative PET scans during the first three cycles of treatment (days 0 to 63). Tumor response was sequentially determined clinically, radiographically, and then pathologically after nine treatment cycles. RESULTS Eight patients had partial or complete pathologic responses. Their maximal tumor uptake of FDG assessed by PET decreased promptly with treatment to the following: day 8, 78 +/- 9.2% (P < .03); day 21, 68.1 +/- 7.5% (P < .025); day 42, 60 +/- 5.1% (P < .001); day 63, 52.4 +/- 4.4% (P < .0001) of the basal values. Tumor diameter did not decrease significantly during this period through 63 days. Prompt decreases in the FDG influx rate (K) from basal levels (from .019 to .014 mL/cm3/min) after 8 days of treatment (P < .02) and in the estimated rate of FDG phosphorylation to FDG-6-phosphate (k3) from .055 to .038 min-1 after 8 days of treatment (P < .02) to .029 +/- .004 min-1 at 21 days) (P < .02) were observed. Three nonresponding patients had no significant decrease in tumor uptake of FDG (81 +/- 18% of basal value), influx rate (.015 to .012 mL/cm3/min), or tumor size (81 +/- 12% of basal diameter) comparing basal versus 63-day posttreatment values. CONCLUSION Quantitative FDG PET scans of primary breast cancers showed a rapid and significant decrease in tumor glucose metabolism after effective treatment was initiated, with the reduction in metabolism antedating any decrement in tumor size. No significant decrease in FDG uptake (SUV) after three cycles of treatment was observed in the nonresponding patients. FDG PET scanning has substantial promise as an early noninvasive metabolic marker of the efficacy of cancer treatment.
0
Citation603
0
Save
10

VRK1 is a Paralog Synthetic Lethal Target in VRK2-methylated Glioblastoma

Julie Shields et al.Jan 1, 2022
ABSTRACT Synthetic lethality — a genetic interaction that results in cell death when two genetic deficiencies co-occur but not when either deficiency occurs alone — can be co-opted for cancer therapeutics. A pair of paralog genes is among the most straightforward synthetic lethal interaction by virtue of their redundant functions. Here we demonstrate a paralog-based synthetic lethality by targeting Vaccinia-Related Kinase 1 (VRK1) in Vaccinia-Related Kinase 2 (VRK2)-methylated glioblastoma (GBM). VRK2 is silenced by promoter methylation in approximately two-thirds of GBM, an aggressive cancer with few available targeted therapies. Genetic knockdown of VRK1 in VRK2-null or VRK2-methylated cells results in decreased activity of the downstream substrate Barrier to Autointegration Factor (BAF), a regulator of post-mitotic nuclear envelope formation. VRK1 knockdown, and thus reduced BAF activity, causes nuclear lobulation, blebbing and micronucleation, which subsequently results in G2/M arrest and DNA damage. The VRK1-VRK2 synthetic lethal interaction is dependent on VRK1 kinase activity and is rescued by ectopic VRK2 expression. Knockdown of VRK1 leads to robust tumor growth inhibition in VRK2-methylated GBM xenografts. These results indicate that inhibiting VRK1 kinase activity could be a viable therapeutic strategy in VRK2-methylated GBM.
10
Citation3
0
Save