FY
Fulong Yu
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
14
h-index:
16
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Deciphering cell states and genealogies of human hematopoiesis

Chen Weng et al.Jan 22, 2024
+24
D
F
C
0
Citation7
-1
Save
130

Variant to function mapping at single-cell resolution through network propagation

Fulong Yu et al.Jan 24, 2022
+8
J
C
F
With burgeoning human disease genetic associations and single-cell genomic atlases covering a range of tissues, there are unprecedented opportunities to systematically gain insights into the mechanisms of disease-causal variation. However, sparsity and noise, particularly in the context of single-cell epigenomic data, hamper the identification of disease- or trait-relevant cell types, states, and trajectories. To overcome these challenges, we have developed the SCAVENGE method, which maps causal variants to their relevant cellular context at single-cell resolution by employing the strategy of network propagation. We demonstrate how SCAVENGE can help identify key biological mechanisms underlying human genetic variation including enrichment of blood traits at distinct stages of human hematopoiesis, defining monocyte subsets that increase the risk for severe coronavirus disease 2019 (COVID-19), and identifying intermediate lymphocyte developmental states that are critical for predisposition to acute leukemia. Our approach not only provides a framework for enabling variant-to-function insights at single-cell resolution, but also suggests a more general strategy for maximizing the inferences that can be made using single-cell genomic data.
130
Citation3
0
Save
1

A genetic disorder reveals a hematopoietic stem cell regulatory network co-opted in leukemia

Richard Voit et al.Dec 9, 2021
+9
F
L
R
ABSTRACT The molecular regulation of human hematopoietic stem cell (HSC) maintenance is therapeutically important, but limitations in experimental systems and interspecies variation have constrained our knowledge of this process. Here, we have studied a rare genetic disorder due to MECOM haploinsufficiency, characterized by an early-onset absence of HSCs in vivo . By generating a faithful model of this disorder in primary human HSCs and coupling functional studies with integrative single-cell genomic analyses, we uncover a key transcriptional network involving hundreds of genes that is required for HSC maintenance. Through our analyses, we nominate cooperating transcriptional regulators and identify how MECOM prevents the CTCF-dependent genome reorganization that occurs as HSCs differentiate. Strikingly, we show that this transcriptional network is co-opted in high-risk leukemias, thereby enabling these cancers to acquire stem cell properties. Collectively, we illuminate a regulatory network necessary for HSC self-renewal through the study of a rare experiment of nature.
1
Citation2
0
Save
29

CUT&RUNTools 2.0: A pipeline for single-cell and bulk-level CUT&RUN and CUT&Tag data analysis

Fulong Yu et al.Jan 27, 2021
G
V
F
Abstract Genome-wide profiling of transcription factor binding and chromatin states is a widely-used approach for mechanistic understanding of gene regulation. Recent technology development has enabled such profiling at single-cell resolution. However, an end-to-end computational pipeline for analyzing such data is still lacking. To fill this gap, we have developed a flexible pipeline for analysis and visualization of single-cell CUT&RUN and CUT&Tag data, which provides functions for sequence alignment, quality control, dimensionality reduction, cell clustering, data aggregation, and visualization. Furthermore, it is also seamlessly integrated with the functions in original CUT&RUNTools for population-level analyses. As such, this provides a valuable toolbox for the community.
0

scTPA: A web tool for single-cell transcriptome analysis of pathway activation signatures

Yan Zhang et al.Jan 15, 2020
+6
J
J
Y
The most fundamental challenge in current single-cell RNA-seq data analysis is functional interpretation and annotation of cell clusters. The biological pathways in distinct cell types have different activation patterns, which facilitates understanding cell functions in single-cell transcriptomics. However, no effective web tool has been implemented for single-cell transcriptomic data analysis based on prior biological pathway knowledge. Here, we introduce scTPA ( ), which is a web-based platform providing pathway-based analysis of single-cell RNA-seq data in human and mouse. scTPA incorporates four widely-used gene set enrichment methods to estimate the pathway activation scores of single cells based on a collection of available biological pathways with different functional and taxonomic classifications. The clustering analysis and cell-type-specific activation pathway identification were provided for the functional interpretation of cell types from pathway-oriented perspective. An intuitive interface allows users to conveniently visualize and download single-cell pathway signatures. Together, scTPA is a comprehensive tool to identify pathway activation signatures for dissecting single cell heterogeneity.
0

Context-aware single-cell multiome approach identified cell-type specific lung cancer susceptibility genes

Erping Long et al.Jan 1, 2023
+20
H
A
E
Genome-wide association studies (GWAS) identified over fifty loci associated with lung cancer risk. However, the genetic mechanisms and target genes underlying these loci are largely unknown, as most risk-associated-variants might regulate gene expression in a context-specific manner. Here, we generated a barcode-shared transcriptome and chromatin accessibility map of 117,911 human lung cells from age/sex-matched ever- and never-smokers to profile context-specific gene regulation. Accessible chromatin peak detection identified cell-type-specific candidate cis-regulatory elements (cCREs) from each lung cell type. Colocalization of lung cancer candidate causal variants (CCVs) with these cCREs prioritized the variants for 68% of the GWAS loci, a subset of which was also supported by transcription factor abundance and footprinting. cCRE colocalization and single-cell based trait relevance score nominated epithelial and immune cells as the main cell groups contributing to lung cancer susceptibility. Notably, cCREs of rare proliferating epithelial cell types, such as AT2-proliferating (0.13%) and basal cells (1.8%), overlapped with CCVs, including those in TERT. A multi-level cCRE-gene linking system identified candidate susceptibility genes from 57% of lung cancer loci, including those not detected in tissue- or cell-line-based approaches. cCRE-gene linkage uncovered that adjacent genes expressed in different cell types are correlated with distinct subsets of coinherited CCVs, including JAML and MPZL3 at the 11q23.3 locus. Our data revealed the cell types and contexts where the lung cancer susceptibility genes are functional.