Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
MR
Margherita Romeo
Author with expertise in Molecular Mechanisms of Amyloidosis
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
2
h-index:
17
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Machine learning predicts immunoglobulin light chain toxicity through somatic mutations

Maura Garofalo et al.Nov 21, 2019
In systemic light chain amyloidosis (AL), pathogenic monoclonal immunoglobulin light chains (LCs) form toxic aggregates and amyloid fibrils in target organs. Prompt diagnosis is crucial to avoid permanent organ damage. However, delays in diagnosis are common, with a consequent poor patient's prognosis, as symptoms usually appear only after strong organ involvement. Here, we present LICTOR, a machine learning approach predicting LC toxicity in AL, based on the distribution of somatic mutations acquired during clonal selection. LICTOR achieved a specificity and a sensitivity of 0.82 and 0.76, respectively, with an area under the receiver operating characteristic curve (AUC) of 0.87. Tested on an independent set of 12 LCs sequences with known clinical phenotypes, LICTOR achieved a prediction accuracy of 83%. Furthermore, we were able to abolish the toxic phenotype of an LC by in silico reverting two germline-specific somatic mutations identified by LICTOR and by experimentally assessing the loss of toxicity in a Caenorhabditis elegans model in vivo. Therefore, LICTOR represents a promising strategy for AL diagnosis and reducing high mortality rates in AL.### Competing Interest StatementThe authors have declared no competing interest.
0

Modeling Immunoglobulin light chain amyloidosis in Caenorhabditis elegans

Margherita Romeo et al.Jul 9, 2024
Cardiac involvement determines the survival of patients with immunoglobulin light chain (AL) amyloidosis, a rare systemic disease caused by the misfolding and deposition of monoclonal light chains (LCs). The reasons underlining their cardiac tropism remain unknown, and an animal model recapitulating the main pathological features of AL amyloidosis is instrumental. Taking advantage of the similarities between the vertebrate heart and C. elegans' pharynx, we developed a new transgenic nematode expressing a human amyloidogenic lamda LC whose sequence was deduced from an AL-affected patient with cardiac involvement (MNH). Strains expressing a non-amyloidogenic LC (MNM) or the empty vector only (MNV) were generated as controls. At variance with controls, LCs expressed in the body-wall muscle of MNH worms formed native soluble dimeric assemblies, which were secreted and reached different organs, including the pharynx. Noteworthy, MNH worms exerted a pharyngeal impairment resembling the bradycardia occurring in AL-affected patients, accompanied by increased radical oxygen species production and tissue ultrastructural damage. This new animal model can allow the elucidation of the mechanisms underlying the cardiac-specific tropism occurring in AL amyloidosis, providing innovative insights into the pathophysiology.