XC
Xing Che
Author with expertise in Aetiology, Diagnosis, and Management of Myocarditis
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
2
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
5

Structural insights into the viral proteins binding by TRIM7 reveal a general C-terminal glutamine recognition mechanism

Xiao Liang et al.Mar 24, 2022
Abstract The E3 ligase TRIM7 has emerged as a critical player in viral infection and pathogenesis. A recent study found that TRIM7 inhibits human enteroviruses through ubiquitination and proteasomal degradation of viral 2BC protein by targeting the 2C moiety of 2BC protein. Here, we report the crystal structures of TRIM7 in complex with 2C, where the C-terminal region of 2C is inserted into a positively charged groove of the TRIM7 PRY-SPRY domain. Structure-guided biochemical studies revealed the C-terminus glutamine residue of 2C as the primary determinant for TRIM7 binding. Such a glutamine-end motif binding mechanism can be successfully extended to other substrates of TRIM7. More importantly, leveraged by this finding, we were able to identify norovirus and SARS-CoV-2 proteins, and physiological proteins, as new TRIM7 substrates. We further show that TRIM7 may function as a restriction factor to promote the degradation of the viral proteins of norovirus and SARS-CoV-2, thereby restoring the Type I interferon immune response and inhibiting viral infection. Several crystal structures of TRIM7 in complex with SARS-CoV-2 proteins are also determined, and a conserved C-terminus glutamine-specific interaction is observed. These findings unveil a common recognition mode by TRIM7, providing the foundation for further mechanistic characterization of antiviral and cellular functions of TRIM7.
5
Citation2
0
Save
7

Molecular Mechanism for Bacterial Degradation of Plant Hormone Auxin

Yongjian Ma et al.Nov 3, 2022
Abstract Plant-associated bacteria play important regulatory roles in modulating plant hormone auxin levels, affecting the growth and yields of crops. A conserved auxin-degradation (adg) operon was recently identified in the Variovorax genomes, which is responsible for root growth inhibition (RGI) reversion, promoting rhizosphere colonization and root growth. However, the molecular mechanism underlying auxin degradation by Variovorax remains unclear. Here, we systematically screened Variovorax adg operon products and identified two proteins, AdgB and AdgI, that directly associate with auxin indole-3-acetic acid (IAA). Further biochemical and structural studies revealed that AdgB is a highly IAA-specific ABC transporter solute binding protein, likely involved in IAA uptake. AdgI interacts with AdgH to form a functional Rieske non-heme dioxygenase, which works in concert with a FMN-type reductase encoded by gene adgJ to transform IAA into the biologically inactive 2-oxindole-3-acetic acid (oxIAA), representing a new bacterial pathway for IAA inactivation/degradation. Importantly, incorporation of a minimum set of adgH/I/J genes could enable IAA degradation by E. coli , suggesting a promising strategy for repurposing the adg operon for IAA regulation. Together, our study identifies the key components and underlying mechanisms involved in IAA transformation by Variovorax and brings new insights into the bacterial turnover of plant hormones, which would provide the basis for potential applications in rhizosphere optimization and ecological agriculture.