JD
Jahn Davik
Author with expertise in Genetic and Environmental Factors in Berry Production
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
1,124
h-index:
16
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The genome of woodland strawberry (Fragaria vesca)

Vladimir Shulaev et al.Dec 26, 2010
The International Strawberry Sequencing Consortium reports the draft genome of the woodland strawberry (Fragaria vesca). The genome of this diploid species should serve as a reference genome for the Fragaria genus, as the cultivated strawberry (Fragaria × ananassa) is an octoploid where F. vesca is predicted to be a subgenome donor. The woodland strawberry, Fragaria vesca (2n = 2x = 14), is a versatile experimental plant system. This diminutive herbaceous perennial has a small genome (240 Mb), is amenable to genetic transformation and shares substantial sequence identity with the cultivated strawberry (Fragaria × ananassa) and other economically important rosaceous plants. Here we report the draft F. vesca genome, which was sequenced to ×39 coverage using second-generation technology, assembled de novo and then anchored to the genetic linkage map into seven pseudochromosomes. This diploid strawberry sequence lacks the large genome duplications seen in other rosids. Gene prediction modeling identified 34,809 genes, with most being supported by transcriptome mapping. Genes critical to valuable horticultural traits including flavor, nutritional value and flowering time were identified. Macrosyntenic relationships between Fragaria and Prunus predict a hypothetical ancestral Rosaceae genome that had nine chromosomes. New phylogenetic analysis of 154 protein-coding genes suggests that assignment of Populus to Malvidae, rather than Fabidae, is warranted.
0
Citation1,123
0
Save
1

Genetic mapping and identification of a QTL determining tolerance to freezing stress in Fragaria vesca L.

Jahn Davik et al.Feb 22, 2021
Abstract Extreme cold and frost cause significant stress to plants which can potentially be lethal. Low temperature freezing stress can cause significant and irreversible damage to plant cells and can induce physiological and metabolic changes that impact on growth and development. Low temperatures cause physiological responses including winter dormancy and autumn cold hardening in strawberry ( Fragaria ) species, and some diploid F. vesca accessions have been shown to have adapted to low-temperature stresses. To study the genetics of freezing tolerance, a F. vesca mapping population of 142 seedlings segregating for differential responses to freezing stress was raised. The progeny was mapped using ‘Genotyping-by-Sequencing’ and a linkage map of 2,918 markers at 851 loci was resolved. The mapping population was phenotyped for freezing tolerance response under controlled and replicated laboratory conditions and subsequent quantitative trait loci analysis using interval mapping revealed a single significant quantitative trait locus on Fvb2 in the physical interval 10.6 Mb and 15.73 Mb on the F. vesca v4.0 genome sequence. This physical interval contained 896 predicted genes, several of which had putative roles associated with tolerance to abiotic stresses including freezing. Differential expression analysis of the 896 QTL-associated gene predictions in the leaves and crowns from ‘Alta’ and ‘NCGR1363’ parental genotypes revealed genotype-specific changes in transcript accumulation in response to low temperature treatment as well as expression differences between genotypes prior to treatment for many of the genes. The putative roles, and significant interparental differential expression levels of several of the genes reported here identified them as good candidates for the control of the effects of freezing tolerance at the QTL identified in this investigation and the possible role of these candidate genes in response to freezing stress is discussed.
1
Citation1
0
Save
33

A chromosome-length genome assembly and annotation of blackberry (Rubus argutus, cv. ‘Hillquist’)

Tomáš Brůna et al.Apr 30, 2022
Abstract Background Blackberries ( Rubus spp.) are the fourth most economically important berry crop worldwide. Genome assemblies and annotations have been developed for Rubus species in subgenus Idaeobatus , including black raspberry ( R. occidentalis ), red raspberry ( R. idaeus ), and R. chingii , but very few genomic resources exist for blackberries and their relatives in subgenus Rubus . Findings Here we present a chromosome-length assembly and annotation of the diploid blackberry germplasm accession ‘Hillquist’ ( R. argutus ). ‘Hillquist’ is the only known source of primocane-fruiting (annual-fruiting) in tetraploid fresh-market blackberry breeding programs and is represented in the pedigree of many important cultivars worldwide. The ‘Hillquist’ assembly, generated using PacBio long reads scaffolded with Hi-C sequencing, consisted of 298 Mb, of which 270 Mb (90%) was placed on seven chromosome-length scaffolds with an average length of 38.6 Mb. Approximately 52.8% of the genome was composed of repetitive elements. The genome sequence was highly collinear with a novel maternal haplotype-resolved linkage map of the tetraploid blackberry selection A-2551TN and genome assemblies of R. chingii and red raspberry. A total of 38,503 protein-coding genes were predicted using the assembly and Iso-Seq and RNA-seq data, of which 72% were functionally annotated. Conclusions The utility of the ‘Hillquist’ genome has been demonstrated here by the development of the first genotyping-by-sequencing based linkage map of tetraploid blackberry and the identification of several possible candidate genes for primocane-fruiting within the previously mapped locus. This chromosome-length assembly will facilitate future studies in Rubus biology, genetics, and genomics and strengthen applied breeding programs.