JH
Jane Howe
Author with expertise in Electrochemical Reduction of CO2 to Fuels
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
18
(39% Open Access)
Cited by:
4,285
h-index:
49
/
i10-index:
127
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Probing Defect Sites on CeO2 Nanocrystals with Well-Defined Surface Planes by Raman Spectroscopy and O2 Adsorption

Zili Wu et al.Jul 9, 2010
Defect sites play an essential role in ceria catalysis. In this study, ceria nanocrystals with well-defined surface planes have been synthesized and utilized for studying defect sites with both Raman spectroscopy and O2 adsorption. Ceria nanorods ({110} + {100}), nanocubes ({100}), and nano-octahedra ({111}) are employed to analyze the quantity and quality of defect sites on different ceria surfaces. On oxidized surfaces, nanorods have the most abundant intrinsic defect sites, followed by nanocubes and nano-octahedra. When reduced, the induced defect sites are more clustered on nanorods than on nanocubes, although similar amounts (based on surface area) of such defect sites are produced on the two surfaces. Very few defect sites can be generated on the nano-octahedra due to the least reducibility. These differences can be rationalized by the crystallographic surface terminations of the ceria nanocrystals. The different defect sites on these nanocrystals lead to the adsorption of different surface dioxygen species. Superoxide on one-electron defect sites and peroxide on two-electron defect sites with different clustering degree are identified on the ceria nanocrystals depending on their morphology. Furthermore, the stability and reactivity of these oxygen species are also found to be surface-dependent, which is of significance for ceria-catalyzed oxidation reactions.
0

New yellow Ba0.93Eu0.07Al2O4 phosphor for warm-white light-emitting diodes through single-emitting-center conversion

Xufan Li et al.Jan 18, 2013
Phosphor-converted white light-emitting diodes for indoor illumination need to be warm-white (i.e., correlated color temperature <4000 K) with good color rendition (i.e., color rendering index >80). However, no single-phosphor, single-emitting-center-converted white light-emitting diodes can simultaneously satisfy the color temperature and rendition requirements due to the lack of sufficient red spectral component in the phosphors’ emission spectrum. Here, we report a new yellow Ba0.93Eu0.07Al2O4 phosphor that has a new orthorhombic lattice structure and exhibits a broad yellow photoluminescence band with sufficient red spectral component. Warm-white emissions with correlated color temperature <4000 K and color rendering index >80 were readily achieved when combining the Ba0.93Eu0.07Al2O4 phosphor with a blue light-emitting diode (440–470 nm). This study demonstrates that warm-white light-emitting diodes with high color rendition (i.e., color rendering index >80) can be achieved based on single-phosphor, single-emitting-center conversion. Scientists have developed a yellow phosphor that can be used to provide a pleasing white light with a warm color temperature when combined with a blue light-emitting diode (LED) chip. Although YAG: Ce-based white LEDs show great promise as a highly efficient and long-lasting form of domestic lighting, their cool bluish-white light makes them undesirable for use in the home. Scientists from the USA and China have now shown that a new phosphor, Ba0.93Eu0.07Al2O4, when combined with a blue InGaN LED, provides a pleasing white light with a warm colour temperature of less than 4000K and a high colour-rendering index of more than 80. The phosphor has an orthorhombic structure and was manufactured by carbothermal reduction and vapour phase deposition in a tube furnace system. This work suggests that high-quality, warm-white lighting can be achieved using a combination of a single phosphor with single-emitting-center and a blue LED chip.
0

Antiwear Performance and Mechanism of an Oil-Miscible Ionic Liquid as a Lubricant Additive

Jun Qu et al.Jan 16, 2012
An ionic liquid (IL) trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate has been investigated as a potential antiwear lubricant additive. Unlike most other ILs that have very low solubility in nonpolar fluids, this IL is fully miscible with various hydrocarbon oils. In addition, it is thermally stable up to 347 °C, showed no corrosive attack to cast iron in an ambient environment, and has excellent wettability on solid surfaces (e.g., contact angle on cast iron <8°). Most importantly, this phosphonium-based IL has demonstrated effective antiscuffing and antiwear characteristics when blended with lubricating oils. For example, a 5 wt % addition into a synthetic base oil eliminated the scuffing failure experienced in neat oil and, as a result, reduced the friction coefficient by 60% and the wear rate by 3 orders of magnitude. A synergistic effect on wear protection was observed with the current antiwear additive when added into a fully formulated engine oil. Nanostructure examination and composition analysis revealed a tribo-boundary film and subsurface plastic deformation zone for the metallic surface lubricated by the IL-containing lubricants. This protective boundary film is believed to be responsible for the IL's antiscuffing and antiwear functionality.
0

Pd@Pt Core–Shell Concave Decahedra: A Class of Catalysts for the Oxygen Reduction Reaction with Enhanced Activity and Durability

Xue Wang et al.Nov 13, 2015
We report a facile synthesis of multiply twinned Pd@Pt core–shell concave decahedra by controlling the deposition of Pt on preformed Pd decahedral seeds. The Pt atoms are initially deposited on the vertices of a decahedral seed, followed by surface diffusion to other regions along the edges/ridges and then across the faces. Different from the coating of a Pd icosahedral seed, the Pt atoms prefer to stay at the vertices and edges/ridges of a decahedral seed even when the deposition is conducted at 200 °C, naturally generating a core–shell structure covered by concave facets. The nonuniformity in the Pt coating can be attributed to the presence of twin boundaries at the vertices, as well as the {100} facets and twin defects along the edges/ridges of a decahedron, effectively trapping the Pt adatoms at these high-energy sites. As compared to a commercial Pt/C catalyst, the Pd@Pt concave decahedra show substantial enhancement in both catalytic activity and durability toward the oxygen reduction reaction (ORR). For the concave decahedra with 29.6% Pt by weight, their specific (1.66 mA/cm2Pt) and mass (1.60 A/mgPt) ORR activities are enhanced by 4.4 and 6.6 times relative to those of the Pt/C catalyst (0.36 mA/cm2Pt and 0.32 A/mgPt, respectively). After 10 000 cycles of accelerated durability test, the concave decahedra still exhibit a mass activity of 0.69 A/mgPt, more than twice that of the pristine Pt/C catalyst.
0
Paper
Citation310
0
Save
0

In Situ TEM Investigation of Congruent Phase Transition and Structural Evolution of Nanostructured Silicon/Carbon Anode for Lithium Ion Batteries

Chong-Min Wang et al.Mar 5, 2012
It is well-known that upon lithiation, both crystalline and amorphous Si transform to an armorphous Li(x)Si phase, which subsequently crystallizes to a (Li, Si) crystalline compound, either Li(15)Si(4) or Li(22)Si(5). Presently, the detailed atomistic mechanism of this phase transformation and the degradation process in nanostructured Si are not fully understood. Here, we report the phase transformation characteristic and microstructural evolution of a specially designed amorphous silicon (a-Si) coated carbon nanofiber (CNF) composite during the charge/discharge process using in situ transmission electron microscopy and density function theory molecular dynamic calculation. We found the crystallization of Li(15)Si(4) from amorphous Li(x)Si is a spontaneous, congruent phase transition process without phase separation or large-scale atomic motion, which is drastically different from what is expected from a classic nucleation and growth process. The a-Si layer is strongly bonded to the CNF and no spallation or cracking is observed during the early stages of cyclic charge/discharge. Reversible volume expansion/contraction upon charge/discharge is fully accommodated along the radial direction. However, with progressive cycling, damage in the form of surface roughness was gradually accumulated on the coating layer, which is believed to be the mechanism for the eventual capacity fade of the composite anode during long-term charge/discharge cycling.
Load More