JB
Julia Bos
Author with expertise in Bacterial Physiology and Genetics
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
199
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Sedentary chromosomal integrons as biobanks of bacterial anti-phage defence systems

Baptiste Darracq et al.Jul 3, 2024
Integrons are genetic systems that accelerate bacterial adaptation by acquiring and shuffling gene cassettes. Mobile integrons spread antibiotic resistance genes among bacteria, while the sedentary chromosomal integrons contain up to hundreds of cassettes of unknown function. Here, we show that many of these cassettes encode anti-phage defence systems. We found numerous streamlined variants of known systems, which have presumably evolved to fit the small size constraints of integron cassettes recombination and genesis. Intrigued by the rarity of known systems in the sedentary chromosomal integron of the Vibrio cholerae 7th cholera pandemic strain, we tested the presence of anti-phage functions in all its cassettes of unknown function. We found that at least 16 of the strain cassettes have an anti-phage activity in V. cholerae or E. coli. This represents 18% of the tested cassettes and almost 10% of all the integron cassettes, providing at long last a key adaptive role for a significant fraction of the sedentary integrons. Most of the newly discovered systems have little or no similarity to previously known ones and our experiments show that several mediate defence through cell lysis or growth arrest. One of these systems encodes a 64 amino acids protein, which represents the smallest known protein providing autonomous phage resistance. Given the thousands of uncharacterized integron cassette families, integrons could represent an untapped treasure trove of streamlined anti-phage systems.
0
Citation1
0
Save
0

Gamblers: an Antibiotic-induced Evolvable Cell Subpopulation Differentiated by Reactive-oxygen-induced General Stress Response

John Pribis et al.Dec 11, 2018
Antibiotics can induce mutations that cause antibiotic resistance. Yet, despite their importance, mechanisms of antibiotic-promoted mutagenesis remain elusive. We report that the fluoroquinolone antibiotic ciprofloxacin (cipro) induces mutations that cause drug resistance by triggering differentiation of a mutant-generating cell subpopulation, using reactive oxygen species (ROS) to signal the sigma-S (σS) general-stress response. Cipro-generated DNA breaks activate the SOS DNA-damage response and error-prone DNA polymerases in all cells. However, mutagenesis is restricted to a cell subpopulation in which electron transfer and SOS induce ROS, which activate the σS response, allowing mutagenesis during DNA-break repair. When sorted, this small σS-response-'on' subpopulation produces most antibiotic cross-resistant mutants. An FDA-approved drug prevents σS induction specifically inhibiting antibiotic-promoted mutagenesis. Furthermore, SOS-inhibited cell division, causing multi-chromosome cells, is required for mutagenesis. The data support a model in which within-cell chromosome cooperation together with development of a 'gambler' cell subpopulation promote resistance evolution without risking most cells.
11

Measuring single-cell susceptibility to antibiotics within monoclonal bacterial populations

Lena Quellec et al.Mar 9, 2023
Abstract Given the emergence of antimicrobial drug resistance, it is critical to understand the heterogeneity of response to an antibiotic within a population of cells. Since the drug can exert a selection pressure that leads to the emergence of resistant phenotypes. To date, neither bulk nor single-cell methods are able to link the heterogeneity of single-cell susceptibility to the population-scale response to antibiotics. Here we present a platform that measures the ability of individual E. coli cells to form small colonies at different ciprofloxacin concentrations, by using anchored microfluidic drops and an image and data analysis pipelines. The microfluidic results are benchmarked against classical microbiology measurements of antibiotic susceptibility, showing an agreement between the pooled microfluidic chip and replated bulk measurements. Further, the experimental likelihood of a single cell to form a colony is used to provide a probabilistic antibiotic susceptibility curve. In addition to the probabilistic viewpoint, the microfluidic format enables the characterization of morphological features over time for a large number of individual cells. This pipeline can be used to compare the response of different bacterial strains to antibiotics with different action mechanisms.