SC
Sheng Cai
Author with expertise in Acute Myeloid Leukemia
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(62% Open Access)
Cited by:
1,286
h-index:
19
/
i10-index:
26
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
56

Single cell genotypic and phenotypic analysis of measurable residual disease in acute myeloid leukemia

Troy Robinson et al.Sep 22, 2022
Abstract Measurable residual disease (MRD), defined as the population of cancer cells which persists following therapy, serves as the critical reservoir for disease relapse in acute myeloid leukemia (AML) and other malignancies. Understanding the biology enabling MRD clones to resist therapy is necessary to guide the development of more effective curative treatments. Discriminating between residual leukemic clones, preleukemic clones and normal precursors remains a challenge with current MRD tools. Herein, we developed a single cell (sc) MRD assay by combining flow cytometric enrichment of the targeted precursor/blast population with integrated scDNA sequencing and immunophenotyping. Our scMRD assay shows high sensitivity of approximately 0.01%, deconvolutes clonal architecture and provides clone-specific immunophenotypic data. In summary, our scMRD assay enhances MRD detection and simultaneously illuminates the clonal architecture of clonal hematopoiesis/pre-leukemic and leukemic cells surviving AML therapy. Statement of significance ScMRD assay integrates mutation and immunophenotype at single cell resolution and therefore distinguishes clonal hematopoiesis/preleukemic vs. leukemic clones. This study serves as a framework for identifying high-risk MRD clones and improving our understanding of both the molecular drivers and vulnerabilities of therapy resistant AML clones.
56
Citation3
0
Save
20

Jak2V617F Reversible Activation Shows an Essential Requirement for Jak2V617F in Myeloproliferative Neoplasms

Andrew Dunbar et al.May 18, 2022
ABSTRACT Janus kinases (JAKs) mediate cytokine signaling, cell growth and hematopoietic differentiation. 1 Gain-of-function mutations activating JAK2 signaling are seen in the majority of myeloproliferative neoplasm (MPN) patients, most commonly due to the JAK2 V617F driver allele. 2 While clinically-approved JAK inhibitors improve symptoms and outcomes in MPNs, remissions are rare, and mutant allele burden does not substantively change with chronic JAK inhibitor therapy in most patients. 3, 4 This has been postulated to be due to incomplete dependence on constitutive JAK/STAT signaling, alternative signaling pathways, and/or the presence of cooperating disease alleles; 5 however we hypothesize this is due to the inability of current JAK inhibitors to potently and specifically abrogate mutant JAK2 signaling. We therefore developed a conditionally inducible mouse model allowing for sequential activation, and then inactivation, of Jak2 V617F from its endogenous locus using a Dre- rox /Cre- lox dual orthogonal recombinase system. Deletion of oncogenic Jak2 V617F abrogates the MPN disease phenotype, induces mutant-specific cell loss including in hematopoietic stem/progenitor cells, and extends overall survival to an extent not observed with pharmacologic JAK inhibition. Furthermore, reversal of Jak2 V617F in MPN cells with antecedent loss of Tet2 6, 7 abrogates the MPN phenotype and inhibits mutant stem cell persistence suggesting cooperating epigenetic-modifying alleles do not alter dependence on mutant JAK/STAT signaling. Our results suggest that mutant-specific inhibition of JAK2 V617F represents the best therapeutic approach for JAK2 V617F -mutant MPN and demonstrate the therapeutic relevance of a dual-recombinase system to assess mutant-specific oncogenic dependencies in vivo .
20
Citation2
0
Save
30

Leukemia cell of origin influences apoptotic priming and sensitivity to LSD1 inhibition

Sheng Cai et al.May 13, 2020
Summary Previous studies have established that the cell of origin of oncogenic transformation is a determinant of therapeutic sensitivity. However, the mechanisms governing cell-of-origin-driven differences in therapeutic response have not been delineated. Leukemias initiating in hematopoietic stem cells (HSC) are less sensitive to cytotoxic chemotherapy and express high levels of the transcription factor Evi1 compared to leukemias derived from myeloid progenitors. Here, we compared drug sensitivity and expression profiles of murine and human leukemias initiated in either HSCs or myeloid progenitors to reveal a novel function for Evi1 in modulating p53 protein stability and activity. HSC-derived leukemias exhibit decreased apoptotic priming, attenuated p53 transcriptional output, and resistance to lysine-specific demethylase 1 inhibitors in addition to classical genotoxic stresses. p53 loss-of-function in Evi1 low progenitor-derived leukemias induces resistance to LSD1 inhibition. By contrast, Evi1 high leukemias are sensitized to LSD1 inhibition by the BH3 mimetic venetoclax, resulting in enhanced apoptosis and greater reductions in disease burden. Our findings demonstrate a cell-of-origin determined novel role for EVI1 in p53 wild-type cancers in reducing p53 function and provide a strategy to circumvent drug resistance in high-risk, chemoresistant EVI1 high AML.
30
Citation2
0
Save
0

Exercise and nutrition to improve cancer Treatment-Related outcomes (ENICTO)

Kathryn Schmitz et al.Aug 8, 2024
Abstract Chemotherapy treatment-related side-effects are common and increase the risk of suboptimal outcomes. Exercise interventions during cancer treatment improve self-reported physical functioning, fatigue, anxiety, and depression, but it is unclear whether these interventions improve important clinical outcomes, such as chemotherapy relative dose intensity (RDI). The National Cancer Institute funded the Exercise and Nutrition to Improve Cancer Treatment-Related Outcomes (ENICTO) Consortium, to address this knowledge gap. This paper describes the mechanisms hypothesized to underpin intervention effects on clinically-relevant treatment outcomes, briefly outlines each project’s distinct research aims, summarizes the scope and organizational structure of ENICTO, and provides an overview of the integrated common data elements used to pursue research questions collectively. In addition, the paper includes a description of consortium-wide activities and broader research community opportunities for collaborative research. Findings from the ENICTO Consortium have the potential to accelerate a paradigm shift in oncology care such that cancer patients could receive exercise and nutrition programming as the standard of care in tandem with chemotherapy to improve RDI for a curative outcome.
0
Citation1
0
Save
91

Modeling clonal evolution and oncogenic dependency in vivo in the context of hematopoietic transformation

Robert Bowman et al.May 18, 2022
Summary Cancer evolution is a multifaceted process involving the acquisition of somatic mutations and progressive epigenetic dysregulation of cellular fate. Both cell-intrinsic mechanisms and environmental interactions provide selective pressures capable of promoting clonal evolution and expansion, with single-cell and bulk DNA sequencing offering increased resolution into this process 1-4 . Advances in genome editing, single-cell biology and expressed lentiviral barcoding have enabled new insights into how transcriptional/epigenetic states change with clonal evolution 5,6 . Despite the extensive catalog of genomic alterations revealed by resequencing studies 7,8 , there remain limited means to functionally model and perturb this evolutionary process in experimental systems 9 . Here we integrated multi-recombinase (Cre, Flp, and Dre) tools for modeling reversible, sequential mutagenesis from premalignant clonal hematopoiesis to acute myeloid leukemia. We demonstrate that somatic acquisition of Flt3 activating mutations elicits distinct phases of acute and chronic activation resulting in differential cooperativity with Npm1 and Dnmt3a disease alleles. We next developed a generalizable allelic framework allowing for the reversible expression of oncogenic mutations at their endogenous loci. We found that reversal of mutant Flt3 resulted in rapid leukemic regression with distinct alterations in cellular compartments depending upon co-occurring mutations. These studies provide a path to model sequential mutagenesis and deterministically investigate mechanisms of transformation and oncogenic dependency in the context of clonal evolution.
91
Citation1
0
Save
0

CRISPR Dependency Screens in Primary Hematopoietic Stem Cells Identify KDM3B as a Genotype Specific Vulnerability in IDH2- and TET2-Mutant Cells

Michael Waarts et al.May 31, 2024
Abstract Clonal hematopoiesis (CH) is a common premalignant state in the blood and confers an increased risk of blood cancers and all-cause mortality. Identification of therapeutic targets in CH has been hindered by the lack of an ex vivo platform amenable for studying primary hematopoietic stem and progenitor cells (HSPCs). Here, we utilize an ex vivo co-culture system of HSPCs with bone marrow endothelial cells to perform CRISPR/Cas9 screens in mutant HSPCs. Our data reveal that loss of the histone demethylase family members Kdm3b and Jmjd1c specifically reduces the fitness of Idh2- and Tet2-mutant HSPCs. Kdm3b loss in mutant cells leads to decreased expression of critical cytokine receptors including Mpl, rendering mutant HSPCs preferentially susceptible to inhibition of downstream JAK2 signaling. Our study nominates an epigenetic regulator and an epigenetically regulated receptor signaling pathway as genotype-specific therapeutic targets and provides a scalable platform to identify genetic dependencies in mutant HSPCs. Significance: Given the broad prevalence, comorbidities, and risk of malignant transformation associated with CH, there is an unmet need to identify therapeutic targets. We develop an ex vivo platform to perform CRISPR/Cas9 screens in primary HSPCs. We identify KDM3B and downstream signaling components as genotype-specific dependencies in CH and myeloid malignancies.
1

Plasmacytoid dendritic cell expansion defines a distinct subset of RUNX1 mutated acute myeloid leukemia

Wenbin Xiao et al.May 13, 2020
Abstract Plasmacytoid dendritic cells (pDC) are the principal natural type I interferon producing dendritic cells. Neoplastic expansion of pDCs and pDC precursors leads to blastic plasmacytoid dendritic cell neoplasm (BPDCN) and clonal expansion of mature pDCs has been described in chronic myelomonocytic leukemia (CMML). The role of pDC expansion in acute myeloid leukemia (AML) is poorly studied. Here we characterize AML patients with pDC expansion (pDC-AML), which we observe in approximately 5% of AML. pDC-AML often possess crosslineage antigen expression and have adverse risk stratification with poor outcome. RUNX1 mutations are the most common somatic alterations in pDC-AML (>70%) and are much more common than in AML without PDC expansion. We demonstrate that pDCs are clonally related to, and originate from, leukemic blasts in pDC-AML. We further demonstrate that leukemic blasts from RUNX1 -mutated AML upregulate a pDC transcriptional program, poising the cells towards pDC differentiation and expansion. Finally, tagraxofusp, a targeted therapy directed to CD123, reduces leukemic burden and eliminates pDCs in a patient-derived xenograft model. In conclusion, pDC-AML is characterized by a high frequency of RUNX1 mutations and increased expression of a pDC transcriptional program. CD123 targeting represents a potential treatment approach for pDC-AML.
Load More