RC
Roberto Chavez
Author with expertise in Molecular Mechanisms of Inflammasome Activation and Regulation
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
6
h-index:
7
/
i10-index:
7
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
22

A hierarchy of cell death pathways confers layered resistance to shigellosis in mice

Justin Roncaioli et al.Sep 21, 2022
Abstract Bacteria of the genus Shigella cause shigellosis, a severe gastrointestinal disease driven by bacterial colonization of colonic intestinal epithelial cells. Vertebrates have evolved programmed cell death pathways that sense invasive enteric pathogens and eliminate their intracellular niche. Previously we reported that genetic removal of one such pathway, the NAIP–NLRC4 inflammasome, is sufficient to convert mice from resistant to susceptible to oral Shigella flexneri challenge (Mitchell, Roncaioli et al., 2020). Here, we investigate the protective role of additional cell death pathways during oral mouse Shigella infection. We find that the Caspase-11 inflammasome, which senses Shigella LPS, restricts Shigella colonization of the intestinal epithelium in the absence of NAIP–NLRC4. However, this protection is limited when Shigella expresses OspC3, an effector that antagonizes Caspase-11 activity. TNFα, a cytokine that activates Caspase-8-dependent apoptosis, also provides protection from Shigella colonization of the intestinal epithelium, but only in the absence of both NAIP– NLRC4 and Caspase-11. The combined genetic removal of Caspases-1,-11, and -8 renders mice hyper-susceptible to oral Shigella infection. Our findings uncover a layered hierarchy of cell death pathways that limit the ability of an invasive gastrointestinal pathogen to cause disease.
22
Citation3
0
Save
0

NAIP–NLRC4-deficient mice are susceptible to shigellosis

Patrick Mitchell et al.May 17, 2020
Abstract Bacteria of the genus Shigella cause shigellosis, a severe gastrointestinal disease that is a major cause of diarrhea-associated mortality in humans. Shigellosis develops upon oral ingestion of as few as 100 bacteria, but million-fold higher doses fail to cause disease in mice. The lack of a physiologically relevant mouse model of shigellosis has impeded our understanding of this important human disease, but why mice are resistant is unknown. Here we show that in human cells, but not in mice, Shigella evades detection by the NAIP–NLRC4 inflammasome, an immune sensor present in intestinal epithelial cells (IECs). We find that NAIP–NLRC4-deficient mice are highly susceptible to oral Shigella infection and recapitulate the clinical features of human shigellosis, including bacterial replication in IECs and neutrophilic inflammation of the colon. Confirming a role for bacterial replication in IECs in our new model, a Shigella mutant lacking IcsA, a factor required for cell-to-cell spread among IECs, is attenuated in otherwise susceptible NAIP–NLRC4-deficient mice. Although inflammasome-mediated cell death is widely held to promote Shigella infection and pathogenesis, we instead demonstrate that IEC-specific NAIP–NLRC4-induced cell death is sufficient to protect the host from shigellosis. Thus, NAIP–NLRC4-deficient mice are a physiologically relevant and experimentally tractable model for shigellosis. More broadly, our results suggest that the lack of an inflammasome response in IECs may help explain the extreme susceptibility of humans to shigellosis.
0
Citation2
0
Save
0

IRG1 and iNOS act redundantly with other interferon gamma-induced factors to restrict intracellular replication ofLegionella pneumophila

J. Price et al.Aug 10, 2019
Abstract Interferon gamma (IFNγ) restricts the intracellular replication of many pathogens, but how IFNγ confers cell-intrinsic pathogen resistance remains unclear. For example, intracellular replication of the bacterial pathogen Legionella pneumophila in macrophages is potently curtailed by IFNγ, but consistent with prior results, no individual genetic deficiency we tested compromised IFNγ-mediated control. Intriguingly, however, we observed that the glycolysis inhibitor 2-deoxyglucose (2DG) partially rescued L. pneumophila replication in IFNγ-treated macrophages. 2DG inhibits glycolysis and triggers the unfolded protein response, but unexpectedly, it appears these effects are not responsible for perturbing the antimicrobial activity of IFNγ. Instead, we found that 2DG rescues bacterial replication predominantly by inhibiting the induction of two key antimicrobial factors, inducible nitric oxide synthase (iNOS) and immune responsive gene 1 (IRG1). Using immortalized and primary macrophages deficient in iNOS and IRG1, we confirm that loss of both iNOS and IRG1, but not individual deficiency in each gene, partially reduces IFNγ-mediated restriction of L. pneumophila . Further, using a combinatorial CRISPR/Cas9 mutagenesis approach, we find that mutation of iNOS and IRG1 in combination with four other genes (CASP11, IRGM1, IRGM3 and NOX2) results in a total loss of L. pneumophila restriction by IFNγ in primary bone marrow macrophages. There are few, if any, other examples in which the complete set of cell-intrinsic factors required for IFNγ-mediated restriction of an intracellular bacterial pathogen have been genetically identified. Our results highlight the combinatorial strategy used by hosts to block the exploitation of macrophages by pathogens. Importance Legionella pneumophila is one example among many species of pathogenic bacteria that replicate within mammalian macrophages during infection. The immune signaling factor interferon gamma (IFNγ) blocks L. pneumophila replication in macrophages and is an essential component of the immune response to L. pneumophila and other intracellular pathogens. However, to date, no study has determined the exact molecular factors induced by IFNγ that are required for its activity. We generated macrophages lacking different combinations of IFNγ-induced genes in an attempt to find a genetic background in which there is a complete loss of IFNγ-mediated restriction of L. pneumophila . We successfully identified six genes that comprise the totality of the IFNγ-dependent restriction of L. pneumophila replication in macrophages. Our results clarify the molecular basis underlying the potent effects of IFNγ and highlight how redundancy downstream of IFNγ is key to prevent exploitation of the macrophage niche by pathogens.
0
Citation1
0
Save
0

New mutant mouse models clarify the role of NAIPs, phosphorylation, NLRP3, and tumors in NLRC4 inflammasome activation

Jeannette Tenthorey et al.Sep 18, 2019
The NAIP/NLRC4 inflammasome is a cytosolic sensor of bacteria that activates Caspase-1 and initiates potent downstream immune responses. Structural, biochemical, and genetic data all demonstrate that the NAIP proteins act as receptors for specific bacterial ligands, while NLRC4 is a downstream adaptor protein that multimerizes with NAIPs to form a macromolecular structure called an inflammasome. However, several aspects of NLRC4 biology remain unresolved. For example, in addition to its clear function in responding to bacteria, NLRC4 has also been proposed to initiate anti-tumor responses, though the underlying mechanism is unknown. NLRC4 has also been shown to be phosphorylated on serine 533, and this modification was suggested to be important for NLRC4 function. In the absence of S533 phosphorylation, it was further proposed that another inflammasome component, NLRP3, can induce NLRC4 activation. We generated a new Nlrc4- deficient mouse line as well as mice encoding phosphomimetic S533D and non- phosphorylatable S533A NLRC4 proteins. Using these genetic models in vivo and in vitro, we fail to observe a role for phosphorylation in NLRC4 inflammasome function. Furthermore, we find no role for NLRP3 in NLRC4 function, or for NLRC4 in a model of melanoma. These results simplify and clarify our understanding of the mechanism of NAIP/NLRC4 activation and its biological functions.
0

The SP140-RESIST pathway regulates interferon mRNA stability and antiviral immunity

Kristen Witt et al.Aug 29, 2024
Type I interferons (IFN-Is) are essential for antiviral immunity but must be tightly regulated. The conserved transcriptional repressor SP140 inhibits interferon beta (Ifnb1) expression via an unknown mechanism. We find that SP140 does not repress Ifnb1 transcription but instead negatively regulates Ifnb1 mRNA stability by directly repressing the expression of a previously uncharacterized regulator we call RESIST (REgulated Stimulator of Interferon via Stabilization of Transcript, previously annotated as Annexin-2 Receptor). RESIST promotes Ifnb1 mRNA stability by counteracting Ifnb1 mRNA destabilization mediated by the Tristetraprolin (TTP) family of RNA-binding proteins and the CCR4-NOT deadenylase complex. SP140 localizes within nuclear bodies, punctate structures that play important roles in silencing DNA virus gene expression in the nucleus. Consistent with this observation, we found that SP140 inhibits replication of the gammaherpesvirus MHV68. The antiviral activity of SP140 was independent of its ability to regulate Ifnb1. Our results establish dual antiviral and interferon regulatory functions for SP140 and identify the SP140-RESIST pathway as a novel regulator of Ifnb1 mRNA stability.