KG
Kerstin Geillinger‐Kästle
Author with expertise in Neonatal Lung Development and Respiratory Morbidity
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
2
h-index:
2
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

IL-11 disrupts alveolar epithelial progenitor function

Rosa Kortekaas et al.Nov 12, 2022
Abstract IL-11 is linked to the pathogenesis of idiopathic pulmonary fibrosis (IPF), since IL-11 induces myofibroblast differentiation and stimulates their excessive collagen deposition in the lung. The alveolar architecture is disrupted in IPF, yet the effect of IL-11 on dysregulated alveolar repair associated with IPF remains to be elucidated. We hypothesized that epithelial-fibroblast communication associated with lung repair is disrupted by IL-11. Thus, we studied whether IL-11 affects the repair responses of alveolar lung epithelium using mouse lung organoids and precision cut lung slices (PCLS). Additionally, we assessed the anatomical distribution of IL-11 and IL-11 receptor in human control and IPF lungs using immunohistochemistry. IL-11 protein was observed in human control lungs in airway epithelium, macrophages and in IPF lungs, in areas of AT2 cell hyperplasia. IL-11R staining was predominantly present in smooth muscle and macrophages. In mouse organoid co-cultures of epithelial cells with lung fibroblasts, IL-11 decreased organoid number and reduced the fraction of pro-SPC expressing organoids, indicating dysfunctional regeneration initiated by epithelial progenitors. In mouse PCLS alveolar marker gene expression declined, whereas airway markers were increased. The response of primary human fibroblasts to IL-11 on gene expression level was minimal, though bulk RNA-sequencing revealed IL-11 modulated a number of processes which may play a role in IPF, including unfolded protein response, glycolysis and Notch signaling. In conclusion, IL-11 disrupts alveolar epithelial regeneration by inhibiting progenitor activation and suppressing the formation of mature alveolar epithelial cells. The contribution of dysregulated fibroblast – epithelial communication to this process appears to be limited.
0

In Silico Treatment: a computational framework for animal model selection and drug assessment

Sergio Picart‐Armada et al.Jun 17, 2024
The translation of findings from animal models to human disease is a fundamental part in the field of drug development. However, only a small proportion of promising preclinical results in animals translate to human pathophysiology. This underscores the necessity for novel data analysis strategies to accurately evaluate the most suitable animal model for a specific purpose, ensuring cross-species translatability. To address this need, we present In Silico Treatment (IST), a computational method to assess translation of disease-related molecular expression patterns between animal models and humans. By simulating changes observed in animals onto humans, IST provides a holistic picture of how well animal models recapitulate key aspects of human disease, or how treatments transform pathogenic expression patterns to healthy ones. Furthermore, IST highlights particular genes that influence molecular features of pathogenesis or drug mode of action. We demonstrate the potential of IST with three applications using bulk transcriptomics data. First, we assessed two mouse models for idiopathic pulmonary fibrosis (IPF): one involving injury with intra-tubular Bleomycin exposure, and the other Adeno-associated-virus-induced, TGFβ1-mediated tissue transformation (AAV6.2-TGFβ1). Both models exhibited gene expression patterns resembling extracellular matrix derangement in human IPF, whereas differences in VEGF-driven vascularization were observed. Second, we confirmed known features of non-alcoholic steatohepatitis (NASH) mouse models, including choline-deficient, l-amino acid-defined diet (CDAA), carbon tetrachloride hepatotoxicity injury (CCl4) and bile duct ligation surgery (BDL). Overall, the three mouse models recapitulated expression changes related to fibrosis in human NASH, whereas model-specific differences were found in lipid metabolism, inflammation, and apoptosis. Third, we reproduced the strong anti-fibrotic signature and induction of the PPARα signaling observed in the Elafibranor experimental treatment for NASH in the CDAA model. We validated the contribution of known disease-related genes to the findings made with IST in the IPF and NASH applications. The complete data integration IST framework, including an interactive app to integrate and compare datasets, is made available as an open-source R package.