EP
Emerald Perlas
Author with expertise in Neuroscience and Genetics of Drosophila Melanogaster
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
203
h-index:
29
/
i10-index:
35
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
3

Striated muscle-specific base editing enables correction of mutations causing dilated cardiomyopathy

Markus Grosch et al.Dec 15, 2022
Abstract Dilated cardiomyopathy (DCM) is the second most common cause for heart failure with no cure except a high-risk heart transplantation. Approximately 30% of DCM patients harbor heritable mutations which are amenable to CRISPR-based gene therapy 1 . However, challenges related to delivery of the editing complex and off-target concerns hamper the broad applicability of CRISPR agents in the heart 2 . We employed a combination of the viral gene transfer vector AAVMYO with superior targeting specificity of heart muscle tissue 3 and CRISPR base editors to repair patient mutations in the cardiac splice factor Rbm20 , which cause aggressive and arrhythmogenic DCM 4 . Using optimized conditions, we could improve splice defects in human iPSC-derived cardiomyocytes (iPSC-CMs) and repair >70% of cardiomyocytes in two Rbm20 knock-in mouse models that we generated to serve as an in vivo platform of our editing strategy. Treatment of juvenile mice restored the localization defect of RBM20 in 75% of cells and splicing of RBM20 targets including TTN. Three months after injection, cardiac dilation and ejection fraction reached wildtype levels. Single-nuclei RNA sequencing (snRNA-seq) uncovered restoration of the transcriptional profile across all major cardiac cell types and whole-genome sequencing (WGS) revealed no evidence for aberrant off-target editing. Our study highlights the potential of base editors combined with AAVMYO to achieve gene repair for treatment of hereditary cardiac diseases.
3
Citation2
0
Save
10

The long noncoding RNA Charme supervises cardiomyocyte maturation by controlling cell differentiation programs in the developing heart

Valeria Taliani et al.Jul 5, 2022
ABSTRACT Long noncoding RNAs (lncRNAs) are emerging as critical regulators of heart physiology and disease, although the studies unveiling their modes-of-action are still limited to few examples. We recently identified pCharme, a chromatin-associated lncRNA whose functional knockout in mice results in defective myogenesis and morphological remodelling of the cardiac muscle. Here, we combined Cap-Analysis of Gene Expression (CAGE), single-cell (sc)RNA sequencing and whole-mount in situ hybridization analyses to study pCharme cardiac expression. Since the early steps of cardiomyogenesis, we found the lncRNA being specifically restricted to cardiomyocytes, where it assists the formation of specific nuclear condensates containing MATR3, as well as important RNAs for cardiac development. In line with the functional significance of these activities, pCharme ablation in mice results in a delayed maturation of cardiomyocytes, which ultimately leads to morphological alterations of the myocardium and ventricular hypo-trabeculation. Since congenital anomalies in myocardium are clinically relevant in humans and predispose patients to major complications, the identification of novel genes controlling cardiac morphology becomes crucial. Our study offers unique insights into a novel lncRNA-mediated regulatory mechanism promoting cardiomyocyte maturation and bears relevance to Charme locus for future theranostic applications.
0

Molecule guided laser ablation as a novel therapeutic strategy to control itch.

Linda Nocchi et al.Nov 27, 2017
Itch is a major symptom of many chronic skin diseases that can exacerbate inflammation by provoking excessive scratching and causing skin damage. Here we develop a novel technology to control itch through molecular guided delivery of a phototoxic agent and near infrared (IR) illumination of the skin. Exploiting the selective binding of the pruritogen Interleukin-31 to itch sensing cells, we generate an engineered IL31SNAP ligand derivative (IL31K138A-SNAP) that binds to cells but does not evoke signaling or provoke scratching when injected in vivo. Conjugation of IL31K138A-SNAP to the photosensitizer IRDye700DX phthalocyanine (IR700) and injection of the skin results in long-term reversal of scratching behavior evoked by IL31 upon near IR illumination. We further develop a topical preparation of IL31K138A-SNAP-IR700 that strikingly, reverses behavioral and dermatological indicators in mouse models of Atopic Dermatitis (AD) and the genetic skin disease Familial Primary Localized Cutaneous Amyloidosis (FPLCA). We demonstrate that this therapeutic effect results from selective retraction of itch sensing neurons in the skin, breaking the cycle of itch and disruption of the skin's barrier function. Thus, molecule guided photoablation is a powerful new technology for controlling itch and treating inflammatory skin diseases.
0

NGF-mediated photoablation of nociceptors reduces pain behavior in mice

Linda Nocchi et al.Mar 12, 2019
Nerve growth factor (NGF) and its receptors TrkA and p75 play a key role in the development and function of peripheral nociceptive neurons. Here we describe novel technology to selectively photoablate TrkA positive nociceptors through delivery of a phototoxic agent coupled to an engineered NGF ligand and subsequent near infrared (NIR) illumination. We demonstrate that this approach allows for on demand and localized reversal of pain behaviors in mouse models of acute, inflammatory, neuropathic and joint pain. To target peripheral nociceptors we generated a SNAP-tagged NGF derivative, NGFR121W that binds to TrkA/p75 receptors but does not provoke signaling in TrkA positive cells or elicit pain behaviors in mice. NGFR121W-SNAP was coupled to the photosensitizer IRDye 700DX phthalocyanine (IR700) and injected subcutaneously. Following NIR illumination of the injected area, behavioral responses to nociceptive mechanical and sustained thermal stimuli, but not innocuous stimuli, were substantially reduced. Similarly, in models of inflammatory, osteoarthritic and neuropathic pain, mechanical hypersensitivity was abolished for three weeks following a single treatment regime. We demonstrate that this loss of pain behavior coincides with the retraction of neurons from the skin which then re-innervate the epidermis after 3 weeks corresponding with the return of mechanical hypersensitivity. Thus NGFR121W-SNAP-mediated photoablation is a minimally invasive approach to reversibly silence nociceptor input from the periphery, and control pain and hypersensitivity to mechanical stimuli.