TW
Thomas Wood
Author with expertise in Impact of Pollinator Decline on Ecosystems and Agriculture
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
7
h-index:
30
/
i10-index:
50
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The Environmental Risks of neonicotinoid pesticides: a review of the evidence post-2013

Thomas Wood et al.Jan 6, 2017
EXECUTIVE SUMMARY Neonicotinoid pesticides were first introduced in the mid-1990s and since then their use has grown rapidly so that they have become the most widely used class of insecticides in the world, with the majority being used as seed coatings. Neonicotinoids are water-soluble, and so a small quantity applied to a seed will dissolve when in contact with water in the soil and be taken up by the roots of the developing plant. Once inside the plant it becomes systemic and is found in vascular tissues and foliage, providing protection against herbivorous insects. This prophylactic use of neonicotinoids has become extremely widespread on a wide range of arable crops across much of the developed world. However, only approximately 5% of the neonicotinoid active ingredient is taken up by crop plants and most instead disperses into the wider environment. Since the mid-2000s numerous studies have raised concerns that neonicotinoids may be having a negative effect on non-target organisms. In particular, neonicotinoids were associated with mass poisoning events of honeybees and were shown to have serious negative effects on honeybee and bumblebee fitness when consumed. In response to this growing body of evidence, the European Food Safety Authority (EFSA) was commissioned to produce risk assessments for the use of clothianidin, imidacloprid and thiamethoxam and their impact on bees. These risk assessments, published in January 2013, conclude that the use of these compounds on certain flowering crops poses a high risk to bees. On the basis of these findings, the European Union adopted a partial ban on these substances in May 2013 which came into force on 1st December 2013. The purpose of this review is to collate and summarise scientific evidence published since 2013 that investigates the impact of neonicotinoids on non-target organisms and to bring it into one place to aid informed decision making. Due to international concern over the unintended impacts of neonicotinoids on wildlife, this topic has received a great deal of scientific attention in this three year period. As the restrictions were put in place because of the risk neonicotinoids pose to bees, much of the recent research work has naturally focussed on this group. Risks to bees Broadly, the EFSA risk assessments addressed risks of exposure to bees from neonicotinoids through various routes and the direct lethal and sublethal impact of neonicotinoid exposure. New scientific evidence is available in all of these areas, and it is possible to comment on the change in the scientific evidence since 2013 compared to the EFSA reports. This process is not meant to be a formal assessment of the risk posed by neonicotinoids in the manner of that conducted by EFSA. Instead it aims to summarise how the new evidence has changed our understanding of the likely risks to bees; is it lower, similar or greater than the risk perceived in 2013. With reference to the EFSA 2013 risk assessments baseline, advances in each considered area and their impact on the original assessment can be summarised thus: * Risk of exposure from pollen and nectar of treated flowering crops. The EFSA reports calculated typical exposure from flowering crops treated with neonicotinoids as seed dressings. Considerably more data are now available in this area, with new studies broadly supporting the calculated exposure values. For bees, flowering crops pose a Risk Unchanged to that reported by EFSA 2013. * Risk from non-flowering crops and cropping stages prior to flowering. Non-flowering crops were considered to pose no risk to bees. No new studies have demonstrated that these non-flowering crops pose a direct risk to bees. They remain a Risk Unchanged. * Risk of exposure from the drilling of treated seed and subsequent dust drift. Despite modification in seed drilling technology, available studies suggest that dust drift continues to occur, and that dust drift still represents a source of acute exposure and so is best considered a Risk Unchanged. * Risk of exposure from guttation fluid. Based on available evidence this was considered a low-risk exposure path by EFSA 2013. New data have not changed this position and so it remains a Risk Unchanged. * Risk of exposure from and uptake of neonicotinoids in non-crop plants. Uptake of neonicotinoids by non-target plants was considered likely to be negligible, though a data gap was identified. Many studies have since been published demonstrating extensive uptake of neonicotinoids and their presence in the pollen, nectar and foliage of wild plants. Bees collecting pollen from neonicotinoid-treated crops can generally be expected to be exposed to the highest neonicotinoid concentrations, but non-trivial quantities of neonicotinoids are also present in pollen and nectar collected from wild plants, and this source of exposure may be much more prolonged than the flowering period of the crop. Exposure from non-target plants clearly represents a Greater Risk. * Risk of exposure from succeeding crops. A data gap was identified for this issue. Few studies have explicitly investigated this, but this area does represent some level of risk as neonicotinoids are now known to have the potential to persist for years in soil, and can be detected in crops multiple years after the last known application. However, as few data exist this is currently considered a Risk Unchanged. * Direct lethality of neonicotinoids to adult bees. Additional studies on toxicity to honeybees have supported the values calculated by EFSA. More data have been produced on neonicotinoid toxicity for wild bee species and meta-analyses suggest a broadly similar response. Reference to individual species is important but neonicotinoid lethality should be broadly considered a Risk Unchanged. * Sublethal effects of neonicotinoids on wild bees. Consideration of sublethal effects by EFSA was limited as there is no agreed testing methodology for the assessment of such effects. A data gap was identified. Exposure to neonicotinoid-treated flowering crops has been shown to have significant negative effects on free flying wild bees under field conditions and some laboratory studies continue to demonstrate negative effects on bee foraging ability and fitness using field-realistic neonicotinoid concentrations. Greater Risk. Within this context, research produced since 2013 suggest that neonicotinoids pose a similar to greater risk to wild and managed bees, compared to the state of play in 2013. Given that the initial 2013 risk assessment was sufficient to impose a partial ban on the use of neonicotinoids on flowering crops, and given that new evidence either confirms or enhances evidence of risk to bees, it is logical to conclude that the current scientific evidence supports the extension of the moratorium, and that the extension of the partial ban to other uses of neonicotinoids should be considered. Broader risks to environmental health In addition to work on bees, our scientific understanding has also been improved in the following areas which were not previously considered by EFSA: * Non-flowering crops treated with neonicotinoids can pose a risk to non-target organisms through increasing mortality in beneficial predator populations. * Neonicotinoids can persist in agricultural soils for several years, leading to chronic contamination and, in some instances, accumulation over time. * Neonicotinoids continue to be found in a wide range of different waterways including ditches, puddles, ponds, mountain streams, rivers, temporary wetlands, snowmelt, groundwater and in outflow from water processing plants. * Reviews of the sensitivity of aquatic organisms to neonicotinoids show that many aquatic insect species are several orders of magnitude more sensitive to these compounds than the traditional model organisms used in regulatory assessments for pesticide use. * Neonicotinoids have been shown to be present in the pollen, nectar and foliage of non-crop plants adjacent to agricultural fields. This ranges from herbaceous annual weeds to perennial woody vegetation. We would thus expect non-target herbivorous insects and non-bee pollinators inhabiting field margins and hedgerows to be exposed to neonicotinoids. Of particular concern, this includes some plants sown adjacent to agricultural fields specifically for the purposes of pollinator conservation. * Correlational studies have suggested a negative link between neonicotinoid usage in agricultural areas and population metrics for butterflies, bees and insectivorous birds in three different countries. Overall, this recent work on neonicotinoids continues to improve our understanding of how these compounds move through and persist in the wider environment. These water soluble compounds are not restricted to agricultural crops, instead permeating most parts of the agricultural environments in which they are used and in some cases reaching further afield via waterways and runoff water. Field-realistic laboratory experiments and field trials continue to demonstrate that traces of residual neonicotinoids can have a mixture of lethal and sublethal effects on a wide range of taxa. Susceptibility varies tremendously between different taxa across many orders of magnitude, with some showing a negative response at parts per billion with others show no such effects at many thousands of parts per billion. Relative to the risk assessments produced in 2013 for clothianidin, imidacloprid and thiamethoxam which focussed on their effects on bees, new research strengthens arguments for the imposition of a moratorium, in particular because it has become evident that they pose significant risks to many non-target organisms, not just bees. Given the improvement in scientific knowledge of how neonicotinoids move into the wider environment from all crop types, a discussion of the risks posed by their use on non-flowering crops and in non-agricultural areas is urgently needed.
0
Paper
Citation3
0
Save
0

Further revisions to the Palaearctic Andrena fauna (Hymenoptera: Andrenidae)

Thomas WoodJul 21, 2024
Andrena is the second largest genus of bees, with around 1,700 species known globally following recent revisions (e.g. Wood & Monfared 2022; Pisanty et al. 2022a; Wood 2023a; b; c; d). The genus is relatively young at approximately 25 million years old, and is known for its explosive radiation as one of if not the most rapidly speciating bee lineages (Bossert et al. 2022; Pisanty et al. 2022b). This rapid rate of speciation combined with a preference for Mediterranean and xeric environments means that a large number of Andrena species remain undetected and undescribed, most clearly in difficult-to-access parts of the Middle East and Central Asia. The genus has a long history of study, particularly in the West Palaearctic (Gusenleitner & Schwarz 2002), and there are consequently a large number of original works describing taxa from across the Old World (e.g. Christ 1791; Panzer 1799; Erichson 1835; Smith 1853; Dours 1873; Morawitz 1876; Schmiedeknecht 1882–1884; Radoszkowski 1891; Nurse 1904; Cameron 1908; Friese 1914; Perkins 1914; Cockerell 1917; Strand 1921; Stöckhert 1935; Noskiewicz 1939; Warncke 1965; Osytshnjuk 1995; Xu et al. 2000; Grünwaldt et al. 2005; Tadauchi et al. 2005). Though workers often corresponded, the huge diversity of species and the often subtle characters separating them means that many taxa are synonymous or present other nomenclatural challenges, but this still remains to be established for many taxa despite historical and contemporary revisionary works (e.g. Warncke 1967; Tadauchi & Xu 1999; 2003; Gusenleitner & Schwarz 2002; Xu et al. 2000; Xu & Tadauchi 2002; 2005; 2009; 2012; Gusenleitner et al. 2005; Pisanty et al. 2018; Astafurova et al. 2022a; 2023; Praz et al. 2022; Wood & Monfared 2022; Wood 2023a; b; c). Against this context, revisionary works on Old World Andrena must balance i) the long history of species description and subsequent use, often with unclear or inconsistent species concepts; ii) the rapid speciation rate of Andrena combined with their often sporadic appearance and highly local distributions leading to enormous species diversity, and iii) the ongoing and incomplete treatment of older names, some of which have not been revised due to inability to locate types or inability to visit specific collections. The present work represents an additional contribution to this ongoing work through resolving existing nomenclatural problems and describing or elevating distinct Old World Andrena species.
0
Paper
Citation1
0
Save
0

Phenology and flowering overlap drive specialization in pollinator networks

Paul Glaum et al.Sep 9, 2020
Variation in diet breadth and specialization stems from fundamental interactions species have with their environment 1-3 . Consequently, understanding the drivers of this variation is key to understanding ecological and evolutionary processes, and will facilitate the development of predictive tools as ecological networks respond to environmental change 4,5 . Diet breadth in wild bees has been an area of focus due to both their close mutualistic dependence on plants, and because both groups are under threat from global biodiversity loss 6 . Though many of the principles governing specialization for pollinators have been identified 7,8 , they remain largely unvalidated. Using mechanistic models of adaptive foraging in pollinators 9,10 , we show that while temporal resource overlap has little impact on specialization in pollinators with extended flight periods, reduced overlap increases specialization as pollinator flight periods decrease. These results are corroborated empirically using pollen load data taken from bees with shorter (genus Andrena ) and longer (genus Lasioglossum ) flight periods across environments with both high and low temporal resource overlap. This approach reveals how interacting phenologies structure plant-pollinator networks and drive pollinator diet breadth via the temporal overlap of floral resources.
0

Plant versus pollinator protection: balancing pest management against floral contamination for insecticide use in Midwestern US cucurbits

Keng‐Lou Hung et al.Aug 23, 2024
Controlling crop pests while conserving pollinators is challenging, particularly when prophylactically applying broad-spectrum, systemic insecticides such as neonicotinoids. Systemic insecticides are often used in conventional agriculture in commercial settings, but the conditions that optimally balance pest management and pollination are poorly understood. We investigated how insecticide application strategies control pests and expose pollinators to insecticides with an observational study of cucurbit crops in the Midwestern United States. To define the window of protection and potential pollinator exposure resulting from alternative insecticide application strategies, we surveyed 62 farms cultivating cucumber, watermelon, or pumpkin across 2 yr. We evaluated insecticide regimes, abundance of striped and spotted cucumber beetles (Acalymma vittatum [Fabricius] and Diabrotica undecimpunctata Mannerheim), and insecticide residues in leaves, pollen, and nectar. We found that growers used neonicotinoids (thiamethoxam and imidacloprid) at planting in all cucumber and pumpkin and approximately half of watermelon farms. In cucumber, foliar thiamethoxam levels were orders of magnitude higher than the other crops, excluding nearly all beetles from fields. In watermelon and pumpkin, neonicotinoids applied at planting resulted in 4-8 wk of protection before beetle populations increased. Floral insecticide concentrations correlated strongly with foliar concentrations across all crops, resulting in high potential exposure to pollinators in cucumber and low-moderate exposure in pumpkin and watermelon. Thus, the highest-input insecticide regimes maintained cucumber beetles far below economic thresholds while also exposing pollinators to the highest pollen and nectar insecticide concentrations. In cucurbits, reducing pesticide inputs will likely better balance crop protection and pollination, reduce costs, and improve yields.