LG
Leonardo Gollo
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(56% Open Access)
Cited by:
1,776
h-index:
26
/
i10-index:
33
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Metastable brain waves

James Roberts et al.Mar 5, 2019
Abstract Traveling patterns of neuronal activity—brain waves—have been observed across a breadth of neuronal recordings, states of awareness, and species, but their emergence in the human brain lacks a firm understanding. Here we analyze the complex nonlinear dynamics that emerge from modeling large-scale spontaneous neural activity on a whole-brain network derived from human tractography. We find a rich array of three-dimensional wave patterns, including traveling waves, spiral waves, sources, and sinks. These patterns are metastable, such that multiple spatiotemporal wave patterns are visited in sequence. Transitions between states correspond to reconfigurations of underlying phase flows, characterized by nonlinear instabilities. These metastable dynamics accord with empirical data from multiple imaging modalities, including electrical waves in cortical tissue, sequential spatiotemporal patterns in resting-state MEG data, and large-scale waves in human electrocorticography. By moving the study of functional networks from a spatially static to an inherently dynamic (wave-like) frame, our work unifies apparently diverse phenomena across functional neuroimaging modalities and makes specific predictions for further experimentation.
0

Dwelling quietly in the rich club: brain network determinants of slow cortical fluctuations

Leonardo Gollo et al.Mar 31, 2015
For more than a century, cerebral cartography has been driven by investigations of structural and morphological properties of the brain across spatial scales and the temporal/functional phenomena that emerge from these underlying features. The next era of brain mapping will be driven by studies that consider both of these components of brain organization simultaneously--elucidating their interactions and dependencies. Using this guiding principle, we explored the origin of slowly fluctuating patterns of synchronization within the topological core of brain regions known as the rich club, implicated in the regulation of mood and introspection. We find that a constellation of densely interconnected regions that constitute the rich club (including the anterior insula, amygdala and precuneus) play a central role in promoting a stable, dynamical core of spontaneous activity in the primate cortex. The slow timescales are well matched to the regulation of internal visceral states, corresponding to the somatic correlates of mood and anxiety. In contrast, the topology of the surrounding 'feeder' cortical regions shows unstable, rapidly fluctuating dynamics likely to be crucial for fast perceptual processes. We discuss these findings in relation to psychiatric disorders and the future of connectomics.
74

On the intersection between data quality and dynamical modelling of large-scale fMRI signals

Kevin Aquino et al.May 25, 2021
Large-scale dynamics of the brain are routinely modelled using systems of nonlinear dynamical equations that describe the evolution of population-level activity, with distinct neural populations often coupled according to an empirically measured structural connection matrix. This modelling approach has been used to generate insights into the neural underpinnings of spontaneous brain dynamics, as recorded with techniques such as resting state functional MRI (fMRI). In fMRI, researchers have many degrees of freedom in the way that they can process the data and recent evidence indicates that the choice of pre-processing steps can have a major effect on empirical estimates of functional connectivity. However, the potential influence of such variations on modelling results are seldom considered. Here we show, using three popular whole-brain dynamical models, that different choices during fMRI preprocessing can dramatically affect model fits and interpretations of findings. Critically, we show that the ability of these models to accurately capture patterns in fMRI dynamics is mostly driven by the degree to which they fit global signals rather than interesting sources of coordinated neural dynamics. We show that widespread deflections can arise from simple global synchronisation. We introduce a simple two-parameter model that captures these fluctuations and which performs just as well as more complex, multi-parameter biophysical models. From our combined analyses of data and simulations, we describe benchmarks to evaluate model fit and validity. Although most models are not resilient to denoising, we show that relaxing the approximation of homogeneous neural populations by more explicitly modelling inter-regional effective connectivity can improve model accuracy at the expense of increased model complexity. Our results suggest that many complex biophysical models may be fitting relatively trivial properties of the data, and underscore a need for tighter integration between data quality assurance and model development.
5

Detection of cross-frequency coupling between brain areas: an extension of phase-linearity measurement

Pierpaolo Sorrentino et al.Nov 27, 2020
Abstract The current paper proposes a method to estimate phase to phase cross-frequency coupling between brain areas, applied to broadband signals, without any a priori hypothesis about the frequency of the synchronized components. N:m synchronization is the only form of cross-frequency synchronization that allows the exchange of information at the time resolution of the faster signal, hence likely to play a fundamental role in large-scale coordination of brain activity. The proposed method, named cross-frequency phase linearity measurement (CF-PLM), builds and expands upon the phase linearity measurement, an iso-frequency connectivity metrics previously published by our group. The main idea lies in using the shape of the interferometric spectrum of the two analyzed signals in order to estimate the strength of cross-frequency coupling. Here, we demonstrate that the CF-PLM successfully retrieves the (different) frequencies of the original broad-band signals involved in the connectivity process. Furthermore, if the broadband signal has some frequency components that are synchronized in iso-frequency and some others that are synchronized in cross-frequency, our methodology can successfully disentangle them and describe the behaviour of each frequency component separately. We first provide a theoretical explanation of the metrics. Then, we test the proposed metric on simulated data from coupled oscillators synchronized in iso- and cross-frequency (using both Rössler and Kuramoto oscillator models), and subsequently apply it on real data from brain activity, using source-reconstructed Magnetoencephalography (MEG) data. In the synthetic data, our results show reliable estimates even in the presence of noise and limited sample sizes. In the real signals, components synchronized in cross-frequency are retrieved, together with their oscillation frequencies. All in all, our method is useful to estimate n:m synchronization, based solely on the phase of the signals (independently of the amplitude), and no a-priori hypothesis is available about the expected frequencies. Our method can be exploited to more accurately describe patterns of cross-frequency synchronization and determine the central frequencies involved in the coupling.
5
Citation1
0
Save
0

Tracking the Distance to Criticality in Systems with Unknown Noise

Brendan Harris et al.Aug 8, 2024
Many real-world systems undergo abrupt changes in dynamics as they move across critical points, often with dramatic and irreversible consequences. Much existing theory on identifying the time-series signatures of nearby critical points, such as increased signal variance and slower timescales, is derived from analytically tractable systems, typically considering the case of fixed, low-amplitude noise. However, real-world systems are often corrupted by unknown levels of noise that can distort these temporal signatures. Here we aim to develop noise-robust indicators of the distance to criticality (DTC) for systems affected by dynamical noise in two cases: when the noise amplitude is either fixed or is unknown and variable across recordings. We present a highly comparative approach to this problem that compares the ability of over 7000 candidate time-series features to track the DTC in the vicinity of a supercritical Hopf bifurcation. Our method recapitulates existing theory in the fixed-noise case, highlighting conventional time-series features that accurately track the DTC. But in the variable-noise setting, where these conventional indicators perform poorly, we highlight new types of high-performing time-series features and show that their success is accomplished by capturing the shape of the invariant density (which depends on both the DTC and the noise amplitude) relative to the spread of fast fluctuations (which depends on the noise amplitude). We introduce a new high-performing time-series statistic, the rescaled autodensity (RAD), that combines these two algorithmic components. We then use RAD to provide new evidence that brain regions higher in the visual hierarchy are positioned closer to criticality, supporting existing hypotheses about patterns of brain organization that are not detected using conventional metrics of the DTC. Our results demonstrate how large-scale algorithmic comparison can yield theoretical insights that can motivate new theory and interpretable algorithms for solving important real-world problems. Published by the American Physical Society 2024
0

Network structure of the human musculoskeletal system shapes neural interactions on multiple timescales

Jennifer Kerkman et al.Aug 29, 2017
Human motor control requires the coordination of muscle activity under the anatomical constraints imposed by the musculoskeletal system. Interactions within the central nervous system are fundamental to motor coordination, but the principles governing functional integration remain poorly understood. We use network analysis to investigate the relationship between anatomical and functional connectivity amongst 36 muscles during postural tasks. We find a modular structure of functional networks that is strongly shaped by the anatomical constraints of the musculoskeletal system. Muscle networks exhibit a multilayer architecture with distinct spectral fingerprints in which functional interactions are established across multiple timescales. Changes in postural tasks are associated with a reconfiguration in the coupling between functional modules. These results identify a distributed neural circuitry in which parallel pathways give rise to different functional modes that facilitate flexible motor behaviours. This multi-level network approach to the motor system offers a unique window into the neural basis for human movement.
Load More