KN
Koodali Nishant
Author with expertise in Molecular Mechanisms of DNA Damage Response
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
2
h-index:
16
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Exo1-protected DNA nicks direct crossover formation in meiosis

Michael Gioia et al.Aug 30, 2021
ABSTRACT In most sexually reproducing organisms crossing over between chromosome homologs during meiosis is critical for the viability of haploid gametes. Most crossovers that form in meiosis in budding yeast result from the biased resolution of double Holliday Junction (dHJ) intermediates. This dHJ resolution step involves the actions Rad2/XPG family nuclease Exo1 and the Mlh1-Mlh3 mismatch repair endonuclease. At present little is known about how these factors act in meiosis at the molecular level. Here we show that Exo1 promotes meiotic crossing over by protecting DNA nicks from ligation. We found that structural elements in Exo1 required for interactions with DNA, such as bending of DNA during nick/flap recognition, are critical for its role in crossing over. Consistent with these observations, meiotic expression of the Rad2/XPG family member Rad27 partially rescued the crossover defect in exo1 null mutants, and meiotic overexpression of Cdc9 ligase specifically reduced the crossover levels of exo1 DNA binding mutants to levels approaching the exo1 null. In addition, our work identified a role for Exo1 in crossover interference that appears independent of its resection activity. Together, these studies provide experimental evidence for Exo1-protected nicks being critical for the formation of meiotic crossovers and their distribution.
1
Citation2
0
Save
0

mlh3 separation of function and endonuclease defective mutants display an unexpected effect on meiotic recombination outcomes

Najla Al‐Sweel et al.Feb 14, 2017
Mlh1-Mlh3 is an endonuclease hypothesized to act in meiosis to resolve double Holliday junctions into crossovers. It also plays a minor role in eukaryotic DNA mismatch repair (MMR). To understand how Mlh1-Mlh3 functions in both meiosis and MMR, we analyzed in bakers yeast 60 new mlh3 alleles. Five alleles specifically disrupted MMR, whereas one (mlh3-32) specifically disrupted meiotic crossing over. Mlh1-mlh3 representatives for each separation of function class were purified and characterized. Both Mlh1-mlh3-32 (MMR+, crossover-) and Mlh1-mlh3-45 (MMR-, crossover+) displayed wild-type endonuclease activities in vitro. Msh2-Msh3, an MSH complex that acts with Mlh1-Mlh3 in MMR, stimulated the endonuclease activity of Mlh1-mlh3-32 but not Mlh1-mlh3-45, suggesting that Mlh1-mlh3-45 is defective in MSH interactions. Whole genome recombination maps were constructed for two mlh3 mutants with opposite separation of function phenotypes, and an endonuclease defective mutant. Unexpectedly, all three showed increases in the number of non-crossover events that were not observed in mlh3null. Our observations provide a structure-function map for Mlh3 that reveals the importance of protein-protein interactions in regulating Mlh1-Mlh3 enzymatic activity. They also illustrate how defective meiotic components can alter the fate of meiotic recombination intermediates, providing new insights for how meiotic recombination pathways are regulated.
0

Mitotic systemic genomic instability in yeast

Nadia Sampaio et al.Sep 17, 2017
Conventional models of genome evolution generally include the assumption that mutations accumulate gradually and independently over time. We characterized the occurrence of sudden spikes in the accumulation of genome-wide loss-of-heterozygosity (LOH) in Saccharomyces cerevisiae, suggesting the existence of a mitotic systemic genomic instability process (mitSGI). We characterized the emergence of a rough colony morphology phenotype resulting from an LOH event spanning a specific locus (ACE2/ace2-A7). Surprisingly, half of the clones analyzed also carried unselected secondary LOH tracts elsewhere in their genomes. The number of secondary LOH tracts detected was 20-fold higher than expected assuming independence between mutational events. Secondary LOH tracts were not detected in control clones without a primary selected LOH event. We then measured the rates of single and double LOH at different chromosome pairs and found that coincident LOH accumulated at rates 30-100 fold higher than expected if the two underlying single LOH events occurred independently. These results were consistent between two different strain backgrounds, and in mutant strains incapable of entering meiosis. Our results indicate that a subset of mitotic cells within a population experience systemic genomic instability episodes, resulting in multiple chromosomal rearrangements over one or few generations. They are reminiscent of early reports from the classic yeast genetics literature, as well as recent studies in humans, both in the cancer and genomic disorder contexts, all of which challenge the idea of gradual accumulation of structural genomic variation. Our experimental approach provides a model to further dissect the fundamental mechanisms responsible for mitSGI.
0

The Neurospora crassa standard Oak Ridge background exhibits an atypically efficient meiotic silencing by unpaired DNA.

Dev Giri et al.May 30, 2018
Meiotic silencing by unpaired DNA (MSUD) was discovered in crosses made in the standard Oak Ridge (OR) genetic background of Neurospora crassa. However, MSUD often was decidedly less efficient when the OR-derived MSUD tester strains were crossed with wild-isolated strains (W), which suggested either that sequence heterozygosity in tester x W crosses suppresses MSUD, or that OR represents the MSUD-conducive extreme in the range of genetic variation in MSUD efficiency. Our results support the latter model. MSUD was much less efficient in near-isogenic crosses made in a novel N. crassa B/S1 and the N. tetrasperma 85 genetic backgrounds. Possibly, additional regulatory cues that in other genetic backgrounds calibrate the MSUD response are missing from OR. The OR versus B/S1 difference appears to be determined by loci on chromosomes 1, 2, and 5. OR crosses heterozygous for a chromosome segment duplication (Dp) have for long been known to exhibit an MSUD-dependent barren phenotype. However, inefficient MSUD in N. tetrasperma 85 made Dp-heterozygous crosses non-barren. This is germane to our earlier demonstration that Dps can act as dominant suppressors of repeat-induced point mutation (RIP). Occasionally, during ascospore partitioning rare asci contained >8 nuclei, and round ascospores dispersed less efficiently than spindle-shaped ones.
13

Characterization of systemic genomic instability in budding yeast

Nadia Sampaio et al.May 28, 2020
ABSTRACT Conventional models of genome evolution are centered around the principle that mutations form independently of each other and build up slowly over time. We characterized the occurrence of bursts of genome-wide loss-of-heterozygosity (LOH) in Saccharomyces cerevisiae , providing support for an additional non-independent and faster mode of mutation accumulation. We initially characterized a yeast clone isolated for carrying an LOH event at a specific chromosome site, and surprisingly, found that it also carried multiple unselected rearrangements elsewhere in its genome. Whole genome analysis of over 100 additional clones selected for carrying primary LOH tracts revealed that they too contained unselected structural alterations more often than control clones obtained without any selection. We also measured the rates of coincident LOH at two different chromosomes and found that double LOH formed at rates 14-150 fold higher than expected if the two underlying single LOH events occurred independently of each other. These results were consistent across different strain backgrounds, and in mutants incapable of entering meiosis. Our results indicate that a subset of mitotic cells within a population can experience discrete episodes of systemic genomic instability, when the entire genome becomes vulnerable and multiple chromosomal alterations can form over a narrow time window. They are reminiscent of early reports from the classic yeast genetics literature, as well as recent studies in humans, both in the cancer and genomic disorder contexts. The experimental model we describe provides a system to further dissect the fundamental biological processes responsible for punctuated bursts of structural genomic variation. SIGNIFICANCE STATEMENT Mutations are generally thought to accumulate independently and gradually over many generations. Here, we combined complementary experimental approaches in budding yeast to track the appearance of chromosomal changes resulting in loss-of-heterozygosity (LOH). In contrast to the prevailing model, our results provide evidence for the existence of a path for non-independent accumulation of multiple chromosomal alteration events over few generations. These results are analogous to recent reports of bursts of genomic instability in human cells. The experimental model we describe provides a system to further dissect the fundamental biological processes underlying such punctuated bursts of mutation accumulation.
0

The bakers’s yeast Msh4-Msh5 associates with double-strand break hotspots and chromosome axis during meiosis to promote crossovers

Krishnaprasad Nandanan et al.Jul 24, 2020
ABSTRACT Segregation of homologous chromosomes during the first meiotic division requires at least one obligate crossover/exchange event between the homolog pairs. In the baker’s yeast Saccharomyces cerevisiae and mammals, the mismatch repair-related factors, Msh4-Msh5 and Mlh1-Mlh3 generate the majority of the meiotic crossovers from programmed double-strand breaks (DSBs). To understand the mechanistic role of Msh4-Msh5 in meiotic crossing over, we performed genome-wide ChIP-sequencing and cytological analysis of the Msh5 protein in cells synchronized for meiosis. We observe that Msh5 associates with DSB hotspots, chromosome axis, and centromeres. We found that the initial recruitment of Msh4-Msh5 occurs following DSB resection. A two-step Msh5 binding pattern was observed: an early weak binding at DSB hotspots followed by enhanced late binding upon the formation of double Holliday junction structures. Msh5 association with the chromosome axis is Red1 dependent, while Msh5 association with the DSB hotspots and axis is dependent on DSB formation by Spo11. Msh5 binding was enhanced at strong DSB hotspots consistent with a role for DSB frequency in promoting Msh5 binding. These data on the in vivo localization of Msh5 during meiosis have implications for how Msh4-Msh5 may work with other crossover and synapsis promoting factors to ensure Holliday junction resolution at the chromosome axis. AUTHOR SUMMARY During meiosis, crossovers facilitate physical linkages between homologous chromosomes that ensure their accurate segregation. Meiotic crossovers are initiated from programmed DNA double-strand breaks (DSBs). In the baker’s yeast and mammals, DSBs are repaired into crossovers primarily through a pathway involving the highly conserved mismatch repair related Msh4-Msh5 complex along with other crossover promoting factors. In vitro and physical studies suggest that the Msh4-Msh5 heterodimer facilitates meiotic crossover formation by stabilizing Holliday junctions. We investigated the genome-wide in vivo binding sites of Msh5 during meiotic progression. Msh5 was enriched at DSB hotspots, chromosome axis, and centromere sites. Our results suggest Msh5 associates with both DSB sites on the chromosomal loops and with the chromosome axis to promote crossover formation. These results on the in vivo dynamic localization of the Msh5 protein provide novel insights into how the Msh4-Msh5 complex may work with other crossover and synapsis promoting factors to facilitate crossover formation.