PS
Petr Soukal
Author with expertise in RNA Sequencing Data Analysis
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
338
h-index:
6
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Proteome of the secondary plastid of Euglena gracilis reveals metabolic quirks and colourful history

Anna Vanclová et al.Mar 11, 2019
Abstract Euglena gracilis is a well-studied biotechnologically exploitable phototrophic flagellate harbouring secondary green plastids. Here we describe its plastid proteome obtained by high-resolution proteomics. We identified 1,345 candidate plastid proteins and assigned functional annotations to 774 of them. More than 120 proteins are affiliated neither to the host lineage nor the plastid ancestor and may represent horizontal acquisitions from various algal and prokaryotic groups. Reconstruction of plastid metabolism confirms both the presence of previously studied/predicted enzymes/pathways and also provides direct evidence for unusual features of its metabolism including uncoupling of carotenoid and phytol metabolism, a limited role in amino acid metabolism and the presence of two sets of the SUF pathway for FeS cluster assembly. Most significantly, one of these was acquired by lateral gene transfer (LGT) from the chlamydiae. Plastidial paralogs of membrane trafficking-associated proteins likely mediating a poorly understood fusion of transport vesicles with the outermost plastid membrane were identified, as well as derlin-related proteins that potentially act as protein translocases of the middle membrane, supporting an extremely simplified TIC complex. The proposed innovations may be also linked to specific features of the transit peptide-like regions described here. Hence the Euglena plastid is demonstrated to be a product of several genomes and to combine novel and conserved metabolism and transport processes.
0
Citation5
0
Save
6

Genomics of Preaxostyla Flagellates Illuminates the Path Towards the Loss of Mitochondria

Lukáš Novák et al.Nov 24, 2022
Abstract The notion that mitochondria cannot be lost was shattered with the report of an oxymonad Monocercomonoides exilis , the first eukaryote arguably without any mitochondrion. Yet, questions remain about whether this extends beyond the single species and how this transition took place. The Oxymonadida is a group of gut endobionts taxonomically housed in the Preaxostyla which also contains free-living flagellates of the genera Trimastix and Paratrimastix . The latter two taxa harbour conspicuous mitochondrion-related organelles (MROs). Here we report high-quality genome and transcriptome assemblies of two Preaxostyla representatives, the free-living Paratrimastix pyriformis and the oxymonad Blattamonas nauphoetae . We performed thorough comparisons among all available genomic and transcriptomic data of Preaxostyla to further decipher the evolutionary changes towards amitochondriality, endobiosis, and unstacked Golgi. Our results provide insights into the metabolic and endomembrane evolution, but most strikingly the data confirm the complete loss of mitochondria for all three oxymonad species investigated ( M. exilis , B. nauphoetae , and Streblomastix strix ), suggesting the amitochondriate status is common to a large part if not whole group of Oxymonadida. This observation moves this unique loss to 100 MYA when oxymonad lineage diversified. Author summary Mitochondria are nearly ubiquitous components of eukaryotic cells that constitute bodies of animals, fungi, plants, algae, and a broad diversity of single-celled eukaryotes, aka protists. Many groups of protists have substantially reduced the complexity of their mitochondria because they live in oxygen-poor environments, so they are unable to utilize the most salient feature of mitochondria – their ATP-producing oxidative phosphorylation metabolism. However, for a long time, scientists thought that it is impossible to completely lose a mitochondrion because this organelle provides other essential services to the cell, e.g. synthesis of protein cofactors called iron-sulfur clusters. Detailed investigation of chinchilla symbiont M. exilis documented the first case of an organism without mitochondrion, and it also provided a scenario explaining how this unique evolutionary experiment might have happened. In this work, we expand on this discovery by exploring genomes of multiple relatives of M. exilis . We show that the loss of the mitochondrion is not limited to a single species but possibly extends to its entire group, the oxymonads. We also compare the predicted metabolic capabilities of oxymonads to their closest known mitochondrion-containing relatives and map out various changes that occurred during the transition to amitochondriality.
6
Citation2
0
Save