MH
Matthew Herzog
Author with expertise in Standards and Guidelines for Genetic Variant Interpretation
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
198
h-index:
15
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Loss-of-function in IRF2BPL is associated with neurological phenotypes

Paul Marcogliese et al.May 15, 2018
The Interferon Regulatory Factor 2 Binding Protein Like (IRF2BPL) gene encodes a member of the IRF2BP family of transcriptional regulators. Currently the biological function of this gene is obscure, and the gene has not been associated with a Mendelian disease. Here we describe seven individuals affected with neurological symptoms who carry damaging heterozygous variants in IRF2BPL. Five cases carrying nonsense variants in IRF2BPL resulting in a premature stop codon display severe neurodevelopmental regression, hypotonia, progressive ataxia, seizures, and a lack of coordination. Two additional individuals, both with missense variants, display global developmental delay and seizures and a relatively milder phenotype than those with nonsense alleles. The bioinformatics signature for IRF2BPL based on population genomics is consistent with a gene that is intolerant to variation. We show that the IRF2BPL ortholog in the fruit fly, called pits (protein interacting with Ttk69 and Sin3A), is broadly expressed including the nervous system. Complete loss of pits is lethal early in development, whereas partial knock-down with RNA interference in neurons leads to neurodegeneration, revealing requirement for this gene in proper neuronal function and maintenance. The nonsense variants in IRF2BPL identified in patients behave as severe loss-of-function alleles in this model organism, while ectopic expression of the missense variants leads to a range of phenotypes. Taken together, IRF2BPL and pits are required in the nervous system in humans and flies, and their loss leads to a range of neurological phenotypes in both species.
0

Programmatic Detection of Diploid-Triploid Mixoploidy via Whole Genome Sequencing

James Holt et al.Jul 18, 2018
Purpose: Mixoploidy is a type of mosaicism where an organism is a mixture of cells with different numbers of chromosomes. There are a broad range of phenotypes associated with mixoploidy that vary greatly depending on the fraction of cells that are non-diploid, their chromosome number, their distribution, and presumably the specific variation present in the patient. Clinical detection of mixoploidy is important for diagnosis. Methods: We developed a method to detect mixoploidy from clinical whole genome sequencing (WGS) data through the identification of excess of variant calls centered on unusual B-allele frequencies. Our method isolates the signal from these variants using trio calls and then solves a basic linear equation to estimate levels of diploid-triploid mixoploidy within the sample. Results: We show that our method reflects the results from a cytogenetic test. We provide examples detailing how our method has been used to identify diploid-triploid mixoploid individuals from within the NIH Undiagnosed Diseases Network. We present confirmatory findings obtained by clinical cytogenetic testing and show that our method can be used to identify the diploid-triploid ratio in these cases. Conclusion: WGS data from patients with rare diseases can be used to identify mixoploid individuals. Individuals with certain characteristics as discussed should be tested for mixoploidy as part of standard clinical pipeline procedures. Scripts that perform this calculation are publicly available at https://github.com/HudsonAlpha/mixoviz.