SL
Stephen LaConte
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
869
h-index:
38
/
i10-index:
60
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

An open science resource for establishing reliability and reproducibility in functional connectomics

Xi-Nian Zuo et al.Dec 8, 2014
+83
P
J
X
Abstract Efforts to identify meaningful functional imaging-based biomarkers are limited by the ability to reliably characterize inter-individual differences in human brain function. Although a growing number of connectomics-based measures are reported to have moderate to high test-retest reliability, the variability in data acquisition, experimental designs, and analytic methods precludes the ability to generalize results. The Consortium for Reliability and Reproducibility (CoRR) is working to address this challenge and establish test-retest reliability as a minimum standard for methods development in functional connectomics. Specifically, CoRR has aggregated 1,629 typical individuals’ resting state fMRI (rfMRI) data (5,093 rfMRI scans) from 18 international sites, and is openly sharing them via the International Data-sharing Neuroimaging Initiative (INDI). To allow researchers to generate various estimates of reliability and reproducibility, a variety of data acquisition procedures and experimental designs are included. Similarly, to enable users to assess the impact of commonly encountered artifacts (for example, motion) on characterizations of inter-individual variation, datasets of varying quality are included.
0

Support vector machines for temporal classification of block design fMRI data

Stephen LaConte et al.May 18, 2005
+2
V
S
S
This paper treats support vector machine (SVM) classification applied to block design fMRI, extending our previous work with linear discriminant analysis [LaConte, S., Anderson, J., Muley, S., Ashe, J., Frutiger, S., Rehm, K., Hansen, L.K., Yacoub, E., Hu, X., Rottenberg, D., Strother S., 2003a. The evaluation of preprocessing choices in single-subject BOLD fMRI using NPAIRS performance metrics. NeuroImage 18, 10-27; Strother, S.C., Anderson, J., Hansen, L.K., Kjems, U., Kustra, R., Siditis, J., Frutiger, S., Muley, S., LaConte, S., Rottenberg, D. 2002. The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework. NeuroImage 15, 747-771]. We compare SVM to canonical variates analysis (CVA) by examining the relative sensitivity of each method to ten combinations of preprocessing choices consisting of spatial smoothing, temporal detrending, and motion correction. Important to the discussion are the issues of classification performance, model interpretation, and validation in the context of fMRI. As the SVM has many unique properties, we examine the interpretation of support vector models with respect to neuroimaging data. We propose four methods for extracting activation maps from SVM models, and we examine one of these in detail. For both CVA and SVM, we have classified individual time samples of whole brain data, with TRs of roughly 4 s, thirty slices, and nearly 30,000 brain voxels, with no averaging of scans or prior feature selection.
0

Optimizing Real Time fMRI Neurofeedback for Therapeutic Discovery and Development

Luke Stoeckel et al.Mar 18, 2014
+24
D
S
L
While reducing the burden of brain disorders remains a top priority of organizations like the World Health Organization and National Institutes of Health (BRAIN, 2013), the development of novel, safe and effective treatments for brain disorders has been slow. In this paper, we describe the state of the science for an emerging technology, real time functional magnetic resonance imaging (rtfMRI) neurofeedback, in clinical neurotherapeutics. We review the scientific potential of rtfMRI and outline research strategies to optimize the development and application of rtfMRI neurofeedback as a next generation therapeutic tool. We propose that rtfMRI can be used to address a broad range of clinical problems by improving our understanding of brain-behavior relationships in order to develop more specific and effective interventions for individuals with brain disorders. We focus on the use of rtfMRI neurofeedback as a clinical neurotherapeutic tool to drive plasticity in brain function, cognition, and behavior. Our overall goal is for rtfMRI to advance personalized assessment and intervention approaches to enhance resilience and reduce morbidity by correcting maladaptive patterns of brain function in those with brain disorders.
0

The Real-time fMRI Neurofeedback Based Stratification of Default Network Regulation Neuroimaging Data Repository

Amalia McDonald et al.Sep 15, 2016
+41
N
J
A
Abstract This data descriptor describes a repository of openly shared data from an experiment to assess inter-individual differences in default mode network (DMN) activity. This repository includes cross-sectional functional magnetic resonance imaging (fMRI) data from the Multi Source Interference Task, to assess DMN deactivation, the Moral Dilemma Task, to assess DMN activation, a resting state fMRI scan, and a DMN neurofeedback paradigm, to assess DMN modulation, along with accompanying behavioral and cognitive measures. We report technical validation from n=125 participants of the final targeted sample of 180 participants. Each session includes acquisition of one whole-brain anatomical scan and whole-brain echo-planar imaging (EPI) scans, acquired during the aforementioned tasks and resting state. The data includes several self-report measures related to perseverative thinking, emotion regulation, and imaginative processes, along with a behavioral measure of rapid visual information processing. Technical validation of the data confirms that the tasks deactivate and activate the DMN as expected. Group level analysis of the neurofeedback data indicates that the participants are able to modulate their DMN with considerable inter-subject variability. Preliminary analysis of behavioral responses and specifically self-reported sleep indicate that as many as 73 participants may need to be excluded from an analysis depending on the hypothesis being tested.
0

Evaluating fMRI-Based Estimation of Eye Gaze during Naturalistic Viewing

Jake Son et al.Jun 18, 2018
+9
R
L
J
ABSTRACT The collection of eye gaze information during functional magnetic resonance imaging (fMRI) is important for monitoring variations in attention and task compliance, particularly for naturalistic viewing paradigms (e.g., movies). However, the complexity and setup requirements of current in-scanner eye-tracking solutions can preclude many researchers from accessing such information. Predictive eye estimation regression (PEER) is a previously developed support vector regression-based method for retrospectively estimating eye gaze from the fMRI signal in the eye’s orbit using a 1.5-minute calibration scan. Here, we provide confirmatory validation of the PEER method’s ability to infer eye gaze on a TR-by-TR basis during movie viewing, using simultaneously acquired eye tracking data in five individuals (median angular deviation < 2°). Then, we examine variations in the predictive validity of PEER models across individuals in a subset of data (n=448) from the Child Mind Institute Healthy Brain Network Biobank, identifying head motion as a primary determinant. Finally, we accurately classify which of two movies is being watched based on the predicted eye gaze patterns (area under the curve = .90 ± .02) and map the neural correlates of eye movements derived from PEER. PEER is a freely available and easy-to-use tool for determining eye fixations during naturalistic viewing.
3

MRI Brain Templates of the Male Yucatan Minipig

Carly Norris et al.Jul 19, 2020
+3
E
J
C
Abstract The pig is growing in popularity as an experimental animal because its gyrencephalic brain is similar to humans. Currently, however, there is a lack of appropriate brain templates to support functional and structural neuroimaging pipelines. The primary contribution of this work is an average volume from an iterative, non-linear registration of 70 male Yucatan minipig subjects whose ages ranged from five to seven months. In addition, several aspects of this study are unique, including the comparison of linear and non-linear template generation, the characterization of a large and homogeneous cohort, an analysis of effective resolution after averaging, and the evaluation of potential within template bias as well as a comparison with a template from another minipig species using a “left-out” validation set. We found that within our highly homogeneous co-hort, non-linear registration produced better templates, but only marginally so. Although our T1-weighted data were resolution limited, we preserved effective resolution across the multi-subject average, produced templates that have high gray-white matter contrast, and demonstrated superior registration accuracy compared to the only known alternative minipig template.