MI
Motoko Ikeda
Author with expertise in Molecular Mechanisms of Aging and Longevity
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
3
h-index:
13
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Persistent thermal input controls steering behavior inCaenorhabditis elegans

Motoko Ikeda et al.Apr 29, 2020
Abstract Motile organisms actively detect environmental signals and migrate to a preferable environment. Especially, small-size animals convert subtle difference in sensory input into orientation behavioral output for directly steering toward a destination, but the neural mechanisms underlying steering behavior remain elusive. Here, we analyze a C. elegans thermotactic behavior in which a small number of neurons are shown to mediate steering toward a destination temperature. We construct a neuroanatomical model and use an evolutionary algorithm to find configurations of the model that reproduce empirical thermotactic behavior. We find that, in all the evolved models, steering rates are modulated by persistent thermal signals sensed through forward locomotion. Persistent temperature increment lessens steering rates resulting in straight movement of model worms, whereas temperature decrement enlarges steering rates resulting in curvy movement. This relationship between temperature change and steering rates reproduces the empirical thermotactic migration up thermal gradients and steering bias toward higher temperature. Further, spectrum decomposition of neural activities in model worms show that thermal signals are transmitted from a sensory neuron to motor neurons on the longer time scale than sinusoidal locomotion of C. elegans . Our results suggest that employments of persistent sensory signals enable small-size animals to steer toward a destination in natural environment with variable, noisy, and subtle cues. Author summary A free-living nematode Caenorhabditis elegans memorizes an environmental temperature and steers toward the remembered temperature on a thermal gradient. How does the C. elegans brain, consisting of 302 neurons, achieve this thermotactic steering behavior? Here, we address this question through neuroanatomical modeling and simulation analyses. We find that persistent thermal input modulates steering rates of model worms; worms run straight when they move up to a destination temperature, whereas run crookedly when move away from the destination. As a result, worms steer toward the destination temperature as observed in experiments. Our analysis also shows that persistent thermal signals are transmitted from a thermosensory neuron to dorsal and ventral neck motor neurons, regulating the balance of dorsoventral muscle contractions of model worms and generating steering behavior. This study indicates that C. elegans can steer toward a destination temperature without processing acute thermal input that informs to which direction it should steer. Such indirect mechanism of steering behavior is potentially employed in other motile organisms.
0

Identification of Animal Behavioral Strategies by Inverse Reinforcement Learning

Shoichiro Yamaguchi et al.Apr 20, 2017
Animals are able to reach a desired state in an environment by controlling various behavioral patterns. Identification of the behavioral strategy used for this control is important for understanding animals' decision-making and is fundamental to dissect information processing done by the nervous system. However, methods for quantifying such behavioral strategies have not been fully established. In this study, we developed an inverse reinforcement-learning (IRL) framework to identify an animal's behavioral strategy from behavioral time-series data. As a particular target, we applied this framework to C. elegans thermotactic behavior; after cultivation at a constant temperature with or without food, the fed and starved worms prefer and avoid from the cultivation temperature on a thermal gradient, respectively. Our IRL approach revealed that the fed worms used both absolute and temporal derivative of temperature and that their strategy comprised mixture of two strategies: directed migration (DM) and isothermal migration (IM). The DM is a strategy that the worms efficiently reach to specific temperature, which explained thermotactic behaviors of the fed worms. The IM is a strategy that the worms track along a constant temperature, which reflects isothermal tracking well observed in previous studies. We also showed the neural basis underlying the strategies, by applying our method to thermosensory neuron-deficient worms. In contrast to fed animals, the strategy of starved animals indicated that they escaped the cultivation temperature using only absolute, but not temporal derivative of temperature. Thus, our IRL-based approach is capable of identifying animal strategies from behavioral time-series data and will be applicable to wide range of behavioral studies, including decision-making of other organisms.