LF
Louis Flamand
Author with expertise in Herpesviruses: Epidemiology, Pathogenesis, and Management
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(55% Open Access)
Cited by:
1,066
h-index:
49
/
i10-index:
99
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Platelets Can Associate With SARS-CoV-2 RNA and Are Hyperactivated in COVID-19

Younes Zaid et al.Sep 17, 2020
Rationale: In addition to the overwhelming lung inflammation that prevails in coronavirus disease 2019 (COVID-19), hypercoagulation and thrombosis contribute to the lethality of subjects infected with severe acute respiratory syndrome coronavirus 2. Platelets are chiefly implicated in thrombosis. Moreover, they can interact with viruses and are an important source of inflammatory mediators. While a lower platelet count is associated with severity and mortality, little is known about platelet function during COVID-19. Objective: To evaluate the contribution of platelets to inflammation and thrombosis in patients with COVID-19. Methods and Results: Blood was collected from 115 consecutive patients with COVID-19 presenting nonsevere (n=71) and severe (n=44) respiratory symptoms. We document the presence of severe acute respiratory syndrome coronavirus 2 RNA associated with platelets of patients with COVID-19. Exhaustive assessment of cytokines in plasma and in platelets revealed the modulation of platelet-associated cytokine levels in both patients with nonsevere and severe COVID-19, pointing to a direct contribution of platelets to the plasmatic cytokine load. Moreover, we demonstrate that platelets release their alpha- and dense-granule contents in both nonsevere and severe forms of COVID-19. In comparison to concentrations measured in healthy volunteers, phosphatidylserine-exposing platelet extracellular vesicles were increased in nonsevere, but not in severe cases of COVID-19. Levels of D-dimers, a marker of thrombosis, failed to correlate with any measured indicators of platelet activation. Functionally, platelets were hyperactivated in COVID-19 subjects presenting nonsevere and severe symptoms, with aggregation occurring at suboptimal thrombin concentrations. Furthermore, platelets adhered more efficiently onto collagen-coated surfaces under flow conditions. Conclusions: Taken together, the data suggest that platelets are at the frontline of COVID-19 pathogenesis, as they release various sets of molecules through the different stages of the disease. Platelets may thus have the potential to contribute to the overwhelming thrombo-inflammation in COVID-19, and the inhibition of pathways related to platelet activation may improve the outcomes during COVID-19.
0
Citation436
0
Save
4

Variation in Human Herpesvirus 6B telomeric integration, excision and transmission between tissues and individuals

Michael Wood et al.Jun 8, 2021
Abstract Human herpesviruses 6A and 6B (HHV-6A/6B) are ubiquitous pathogens that persist lifelong in latent form and can cause severe conditions upon reactivation. They are spread by community-acquired infection of free virus (acqHHV6A/6B) and by germline transmission of inherited chromosomally- integrated HHV-6A/6B (iciHHV-6A/6B) in telomeres. We exploited a hypervariable region of the HHV- 6B genome to investigate the relationship between acquired and inherited virus and revealed predominantly maternal transmission of acqHHV-6B in families. Remarkably, we demonstrate that some copies of acqHHV-6B in saliva from healthy adults gained a telomere, indicative of integration and latency, and that the frequency of viral genome excision from telomeres in iciHHV-6B carriers is surprisingly high and varies between tissues. In addition, newly formed short telomeres generated by partial viral genome release are frequently lengthened, particularly in telomerase-expressing pluripotent cells. Consequently, iciHHV-6B carriers are mosaic for different iciHHV-6B structures, including circular extra-chromosomal forms that have the potential to reactivate. Finally, we show transmission of an HHV-6B strain from an iciHHV-6B mother to her non-iciHHV-6B son. Altogether we demonstrate that iciHHV-6B can readily transition between telomere-integrated and free virus forms.
4
Citation2
0
Save
259

SARS-CoV-2 evolution in the absence of selective immune pressures, results in antibody resistance, interferon suppression and phenotypic differences by lineage

Julian Willett et al.Jan 17, 2023
Abstract The persistence of COVID-19 is partly due to viral evolution reducing vaccine and treatment efficacy. Serial infections of Wuhan-like SARS-CoV-2 in Balb/c mice yielded mouse-adapted strains with greater infectivity and mortality. We investigated if passaging unmodified B.1.351 (Beta) and B.1.617.2 (Delta) 20 times in K18-ACE2 mice, expressing human ACE2 receptor, in a BSL-3 laboratory without selective pressures, would drive human health-relevant evolution and if evolution was lineage-dependent. Late-passage virus caused more severe disease, at organism and lung tissue scales, with late-passage Delta demonstrating antibody resistance and interferon suppression. This resistance co-occurred with a de novo spike S371F mutation, linked with both traits. S371F, an Omicron-characteristic mutation, was co-inherited at times with spike E1182G per Nanopore sequencing, existing in different quasi-species at others. Both are linked to mammalian GOLGA7 and ZDHHC5 interactions, which mediate viral-cell entry and antiviral response. This study demonstrates SARS-CoV-2’s tendency to evolve with phenotypic consequences, its evolution varying by lineage, and suggests non-dominant quasi-species contribute.
1

The immediate early protein 1 of human herpesvirus 6B counteracts ATM activation in an NBS1-dependent manner

Vanessa Collin et al.Jul 31, 2021
Abstract Viral infection often trigger an ATM-dependent DNA damage response (DDR) in host cells that suppresses viral replication. To counteract this antiviral surveillance system, viruses evolved different strategies to induce the degradation of the MRE11/RAD50/NBS1 (MRN) complex and prevent subsequent DDR signaling. Here, we report that human herpesvirus 6B (HHV-6B) infection causes genomic instability by suppressing the host cell’s ability to induce ATM-dependent signaling pathways. Expression of immediate early protein 1 (IE1) phenocopies this phenotype and blocks further homology-directed double-strand break (DSB) repair. In contrast to other viruses, IE1 does not affect the stability of the MRN complex. Instead, it uses two distinct domains to inhibit ATM serine/threonine kinase (ATM) activation at DSBs. Structure-based analyses revealed that the N-terminal domain of IE1 interacts with the BRCA1 C-terminal domain 2 of nibrin (NBN, also known as NBS1), while ATM inhibition is attributable to on its C-terminal domain. Consistent with the role of the MRN complex in antiviral responses, NBS1 depletion resulted in increased HHV-6B replication in infected cells. However, in semi-permissive cells, viral integration of HHV-6B into the telomeres was not strictly dependent on NBS1, supporting models where this process occurs via telomere elongation rather than through DNA repair. Interestingly, as IE1 expression has been detected in cells of subjects with inherited chromosomally-integrated form of HHV-6B (iciHHV-6B), a condition associated with several health conditions, our results raise the possibility of a link between genomic instability and the development of iciHHV-6-associated diseases. Significance Statement Many viruses have evolved ways to inhibit DNA damage signaling, presumably to prevent infected cells from activating an antiviral response. Here, we show that this is also true for human herpesvirus 6B (HHV-6B), through its immediate early protein 1 (IE1). However, in contrast to adenovirus’ immediate early proteins, HHV-6B IE1 is recruited to double-strand breaks in an NBS1-dependent manner and inhibits ATM serine/threonine kinase activation. Characterizing this phenotype revealed a unique mechanism by which HHV-6B manipulates DNA damage signaling in infected cells. Consistently, viral replication is restricted by the MRN complex in HHV-6B infected cells. Viral integration of HHV-6B into the host’s telomeres is not strictly dependent on NBS1, challenging current models where integration occurs through homology-directed repair.
6

SARS-CoV-2 type I Interferon modulation by nonstructural proteins 1 and 2

Émile Lacasse et al.Jun 13, 2022
Abstract Since the beginning of the COVID-19 pandemic, enormous efforts were devoted to understanding how SARS-CoV-2 escapes the antiviral response. Yet, modulation of type I interferons (IFNs) by this virus is not completely understood. Using in vitro and in vivo approaches, we have characterized the type I IFN response during SARS-CoV-2 infection as well as immune evasion mechanisms. The transcriptional and translational expression of IFNs, cytokines and chemokines were measured in lung homogenates of Wuhan-like, Beta, and Delta SARS-CoV-2 K18-ACE2 transgenic mice. Using in vitro experiments, we measured SARS-CoV-2 and its non-structural proteins 1 and 2 (Nsp1-2) to modulate expression of IFNβ and interferon-stimulated genes (ISG). Our data show that infection of mice with Wuhan-like virus induces robust expression of Ifna and Ifnb1 mRNA and limited type I production. In contrast, Beta and Delta variant infected mice failed to activate and produce IFNα. Using in vitro systems, Ifnβ gene translation inhibition was observed using an Nsp1 expression vector. Conversely, SARS-CoV-2 and its variants induce robust expression of NF-κB-driven genes such as those encoding CCL2 ans CXCL10 chemokines. We also identified Nsp2 as an activator of NF-κB that partially counteracts the inhibitory actions of Nsp1. In summary, our work indicates that SARS-CoV-2 skews the antiviral response in favor of an NF-κB-driven inflammatory response, a hallmark of acute COVID-19, and that Nsp2 is partly responsible for this effect. Importance Several studies suggest that SARS-CoV-2 possess multiple mechanisms aimed shunting the type I interferon response. However, few studies have studied type I IFN modulation in the context of infection. Our work indicates that mice and human cells infected with SARS-CoV-2 produce sufficient type I IFN to activate an antiviral response, despite Nsp1 translational blockade of IFNΒ1 mRNA. In contrast to Wuhan-like virus, Beta and Delta variants failed to induce Ifna gene expression. Our work also showcases the importance of studying protein functions in the context of infection, as demonstrated by the partial antagonizing properties of the Nsp2 protein on the activities of Nsp1. Our studies also highlight that the innate immune response triggered by SARS-CoV-2 is chiefly driven by NF-κB responsive genes for which Nsp2 is partially responsible.
0

Inherited chromosomally integrated HHV-6 demonstrates tissue-specific RNA expression in vivo that correlates with increased antibody immune response.

Vikas Peddu et al.Aug 21, 2019
Human herpesvirus-6A and 6B (HHV-6A, HHV-6B) are human viruses capable of chromosomal integration. Approximately 1% of the human population carry one copy of HHV-6A/B integrated into every cell in their body, referred to as inherited chromosomally integrated HHV-6A/B (iciHHV-6A/B). Whether iciHHV-6A/B is transcriptionally active in vivo and how it shapes the immunological response is still unclear. Here, we screened DNA-Seq and RNA-Seq data for 650 individuals available through the Genotype-Tissue Expression (GTEx) project and identified 2 iciHHV-6A and 4 iciHHV-6B positive individuals. When corresponding tissue-specific gene expression signatures were analyzed, low levels HHV-6A/B gene expression was found across multiple tissues, with the highest levels of gene expression in the brain (specifically for iciHHV-6A), testis, and esophagus. U90 and U100 were the most highly expressed HHV-6 genes in both iciHHV-6A/B individuals. To assess whether this gene expression influences the HHV-6A/B immune response, a cohort of 15,498 subjects was screened and 85 iciHHV-6A/B+subjects were identified. Plasma samples from iciHHV-6A/B+and age- and sex-matched controls were analyzed for antibodies to control antigens or HHV-6A/B antigens. Our results indicate that iciHHV-6A/B+ subjects have significantly more antibodies against the U90 gene product (IE1) relative to non-iciHHV-6 individuals. Antibody responses against EBV and FLU antigens or HHV-6A/B gene products either not expressed or expressed at low levels, such as U47, U57 or U72, were identical between controls and iciHHV-6A/B+ subjects. These results argue that spontaneous gene expression from integrated HHV-6A/B leads to an increase in antigenic burden that translates into a more robust HHV-6A/B-specific antibody response.
0

Modulation and recruitment of TRF2 at viral telomeres during human herpesvirus 6A/B infection

Shella Gilbert-Girard et al.Jan 9, 2019
Human herpesviruses 6A and 6B (HHV-6A/B) can integrate their genomes into host chromosomes. Integration occurs within the telomeres. The HHV-6A/B genomes contain telomeric repeats essential for integration. We studied how HHV-6A/B infection impacts telomere homeostasis. During infection, a massive increase in telomeric signals was observed. Such telomeric signals were detected in viral replication compartments (VRC) that colocalized with the viral IE2 and P41 proteins. Infection with HHV-6A mutants lacking telomeric repeats did not reproduce this phenotype. HHV-6A/B infection lead to increased expression of three shelterin genes, TRF1, TRF2 and TPP1. TRF2 was recruited to VRC and binding to the HHV-6A/B telomeric repeats demonstrated by chromatin immunoprecipitation and ELISA. Lastly, the HHV-6A IE2 protein colocalized with shelterin proteins at telomeres. In summary, HHV-6A/B infections results in an excess of unprotected telomeric repeats that stimulates the expression of shelterin genes. TRF2 binds to viral telomeres during infection and localizes with HHV-6A IE2 protein. Our results highlight a potential role for shelterin complex proteins and IE2 during infection and possibly during integration of HHV-6A/B into host chromosomes.
Load More