Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
ZL
Zhixin Lu
Author with expertise in Neural Network Fundamentals and Applications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
1,901
h-index:
14
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Reservoir observers: Model-free inference of unmeasured variables in chaotic systems

Zhixin Lu et al.Apr 1, 2017
Deducing the state of a dynamical system as a function of time from a limited number of concurrent system state measurements is an important problem of great practical utility. A scheme that accomplishes this is called an "observer." We consider the case in which a model of the system is unavailable or insufficiently accurate, but "training" time series data of the desired state variables are available for a short period of time, and a limited number of other system variables are continually measured. We propose a solution to this problem using networks of neuron-like units known as "reservoir computers." The measurements that are continually available are input to the network, which is trained with the limited-time data to output estimates of the desired state variables. We demonstrate our method, which we call a "reservoir observer," using the Rössler system, the Lorenz system, and the spatiotemporally chaotic Kuramoto-Sivashinsky equation. Subject to the condition of observability (i.e., whether it is in principle possible, by any means, to infer the desired unmeasured variables from the measured variables), we show that the reservoir observer can be a very effective and versatile tool for robustly reconstructing unmeasured dynamical system variables.
0

Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data

Jaideep Pathak et al.Dec 1, 2017
We use recent advances in the machine learning area known as 'reservoir computing' to formulate a method for model-free estimation from data of the Lyapunov exponents of a chaotic process. The technique uses a limited time series of measurements as input to a high-dimensional dynamical system called a 'reservoir'. After the reservoir's response to the data is recorded, linear regression is used to learn a large set of parameters, called the 'output weights'. The learned output weights are then used to form a modified autonomous reservoir designed to be capable of producing arbitrarily long time series whose ergodic properties approximate those of the input signal. When successful, we say that the autonomous reservoir reproduces the attractor's 'climate'. Since the reservoir equations and output weights are known, we can compute derivatives needed to determine the Lyapunov exponents of the autonomous reservoir, which we then use as estimates of the Lyapunov exponents for the original input generating system. We illustrate the effectiveness of our technique with two examples, the Lorenz system, and the Kuramoto-Sivashinsky (KS) equation. In particular, we use the Lorenz system to show that achieving climate reproduction may require tuning of the reservoir parameters. For the case of the KS equation, we note that as the system's spatial size is increased, the number of Lyapunov exponents increases, thus yielding a challenging test of our method, which we find the method successfully passes.
8

Pathological and metabolic underpinnings of energetic inefficiency in temporal lobe epilepsy

Xiaosong He et al.Sep 24, 2021
Abstract The human brain consumes a disproportionate amount of energy to generate neural dynamics. Yet precisely how energetic processes are altered in neurological disorders remains far from understood. Here, we use network control theory to profile the brain’s energy landscape, describing the rich dynamical repertoire supported by the structural connectome. This approach allows us to estimate the energy required to activate a circuit, and determine which regions most support that activation. Focusing on temporal lobe epilepsy (TLE), we show that patients require more control energy to activate the limbic network than healthy volunteers, especially ipsilateral to the seizure focus. Further, greater energetic costs are largely localized to the ipsilateral temporo-limbic regions. Importantly, the energetic imbalance between ipsilateral and contralateral temporo-limbic regions is tracked by asymmetric metabolic patterns, which in turn are explained by asymmetric gray matter volume loss. In TLE, failure to meet the extra energy demands may lead to suboptimal brain dynamics and inadequate activation. Broadly, our investigation provides a theoretical framework unifying gray matter integrity, local metabolism, and energetic generation of neural dynamics.
0

Optimization of Energy State Transition Trajectory Supports the Development of Executive Function During Youth

Zaixu Cui et al.Sep 23, 2018
Executive function develops rapidly during adolescence, and failures of executive function are associated with both risk-taking behaviors and psychopathology. However, it remains relatively unknown how structural brain networks mature during this critical period to facilitate energetically demanding transitions to activate the frontoparietal system, which is critical for executive function. In a sample of 946 human youths (ages 8-23 yr) who completed diffusion imaging as part of the Philadelphia Neurodevelopment Cohort, we capitalized upon recent advances in network control theory in order to calculate the control energy necessary to activate the frontoparietal system given the existing structural network topology. We found that the control energy required to activate the frontoparietal system declined with development. Moreover, we found that this control energy pattern contains sufficient information to make accurate predictions about individuals' brain maturity. Finally, the control energy costs of the cingulate cortex were negatively correlated with executive performance, and partially mediated the development of executive performance with age. These results could not be explained by changes in general network control properties or in network modularity. Taken together, our results reveal a mechanism by which structural networks develop during adolescence to facilitate the instantiation of activation states necessary for executive function.
0

CTHNet: a network for wheat ear counting with local-global features fusion based on hybrid architecture

Qingyang Hong et al.Jul 2, 2024
Accurate wheat ear counting is one of the key indicators for wheat phenotyping. Convolutional neural network (CNN) algorithms for counting wheat have evolved into sophisticated tools, however because of the limitations of sensory fields, CNN is unable to simulate global context information, which has an impact on counting performance. In this study, we present a hybrid attention network (CTHNet) for wheat ear counting from RGB images that combines local features and global context information. On the one hand, to extract multi-scale local features, a convolutional neural network is built using the Cross Stage Partial framework. On the other hand, to acquire better global context information, tokenized image patches from convolutional neural network feature maps are encoded as input sequences using Pyramid Pooling Transformer. Then, the feature fusion module merges the local features with the global context information to significantly enhance the feature representation. The Global Wheat Head Detection Dataset and Wheat Ear Detection Dataset are used to assess the proposed model. There were 3.40 and 5.21 average absolute errors, respectively. The performance of the proposed model was significantly better than previous studies.