DD
Daniel Davis
Author with expertise in Natural Killer Cells in Immunity
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
17
(47% Open Access)
Cited by:
6,902
h-index:
71
/
i10-index:
177
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells

Ofer Mandelboim et al.Feb 1, 2001
+7
M
N
O
0
Citation955
0
Save
0

The Selective Downregulation of Class I Major Histocompatibility Complex Proteins by HIV-1 Protects HIV-Infected Cells from NK Cells

George Cohen et al.Jun 1, 1999
+4
D
R
G
To avoid detection by CTL, HIV encodes mechanisms for removal of class I MHC proteins from the surface of infected cells. However, class I downregulation potentially exposes the virus-infected cell to attack by NK cells. Human lymphoid cells are protected from NK cell cytotoxicity primarily by HLA-C and HLA-E. We present evidence that HIV-1 selectively downregulates HLA-A and HLA-B but does not significantly affect HLA-C or HLA-E. We then identify the residues in HLA-C and HLA-E that protect them from HIV downregulation. This selective downregulation allows HIV-infected cells to avoid NK cell–mediated lysis and may represent for HIV a balance between escape from CTL and maintenance of protection from NK cells. These results suggest that subpopulations of CTL and NK cells may be uniquely suited for combating HIV.
0
Citation861
0
Save
0

Mechanics of fold‐and‐thrust belts and accretionary wedges: Cohesive Coulomb Theory

F. Dahlen et al.Nov 10, 1984
D
J
F
A critically tapered fold‐and‐thrust belt or submarine accretionary wedge is one that is on the verge of Coulomb failure everywhere, including its base where frictional sliding along a decollement is assumed to be occurring. Cohesion within a wedge can add significantly to the overall strength near the toe; the effect of this is to decrease the near‐toe taper, leading to a critical topographic profile that is concave upward if the decollement is planar. We obtain an approximate self‐consistent solution for the state of stress within a thin‐skinned cohesive critical Coulomb wedge, and determine the relationship between the wedge taper and its strength and basal friction. The theory is then applied to the presently deforming fold‐and‐thrust belt of western Taiwan. Fitting of theoretical critical wedge shapes to topographic profiles and measurements of the step‐up angles of thrust faults from the basal decollement are used to constrain the Taiwan wedge strength parameters. An attractive assertion fully consistent with all the observations is that the mechanics of fold‐and‐thrust belts and accretionary wedges is governed by normal frictional and fracture strengths of rocks measured in the laboratory. In particular, if Byerlee's law µ b = 0.85 is adopted as the coefficient of sliding friction on the base, we find a coefficient of internal friction µ = 0.9–1.0 in the wedge and a wedge cohesion S o = 5–20 MPa. Other solutions having strengths and ambient stresses up to 4 times lower than this can also, however, satisfy the data.
0
Paper
Citation719
0
Save
0

Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission

Stefanie Sowinski et al.Jan 13, 2008
+10
O
C
S
0

The role of salt in fold-and-thrust belts

Daniel Davis et al.Oct 1, 1985
T
D
The style of deformation in thin-skinned fold-and-thrust belts is critically dependent upon the resistance to sliding along the detachment between the mass of deforming sediments and the underlying rocks. Evaporites can provide an extremely weak horizon within which a basal detachment can form and along which only a relatively small shear traction can be supported. Fold-and-thrust belts that form atop a salt layer, such as the Appalachian Plateau, the Franklin Mountains in northwestern Canada, and the Jura of the Alps, among others, share several readily observable characteristics. As predicted by a simple mechanical model for fold-and-thrust belts, a detachment in salt permits a thrust belt to have an extremely narrow cross-sectional taper. In addition, predicted orientations of the principal stress axes over a salt décollement are consistent with the commonly observed lack of a consistently dominant vergence direction of structures within the thrust belt. Other common attributes of salt-basal thin-skinned deformation include the presence of several widely but regularly spaced folds and abrupt changes in deformational style at the edge of the salt basin.
0
Paper
Citation588
0
Save
0

Protection from Natural Killer Cell-Mediated Lysis by HLA-G Expression on Target Cells

Laszlo Pazmany et al.Nov 1, 1996
+3
M
O
L
The outermost layer of the human placenta is devoid of classical class I human leukocyte antigens (HLA-A, HLA-B, and HLA-C) and class II proteins (HLA-DR, HLA-DQ, and HLA-DP). Although this prevents recognition by maternal T lymphocytes, the lack of class I molecules leaves these cells susceptible to attack by natural killer (NK) cells. However, trophoblast cells directly in contact with the maternal tissues express the class I molecule HLA-G, which may be involved in protecting the trophoblast from recognition by NK cells. Here evidence is provided that expression of HLA-G is sufficient to protect otherwise susceptible target cells from lysis by activated NK1 and NK2 cell lines and clones that are specific for distinct groups of HLA-C alleles. The receptors on NK cells that recognize HLA-G are also identified.
0
Citation489
0
Save
0

Micromechanics of pressure‐induced grain crushing in porous rocks

Jiaxiang Zhang et al.Jan 10, 1990
D
T
J
The hydrostatic compaction behavior of a suite of porous sandstones was investigated at confining pressures up to 600 MPa and constant pore pressures ranging up to 50 MPa. These five sandstones (Boise, Kayenta, St. Peter, Berea, and Weber) were selected because of their wide range of porosity (5–35%) and grain size (60–460 μm). We tested the law of effective stress for the porosity change as a function of pressure. Except for Weber sandstone (which has the lowest porosity and smallest grain size), the hydrostat of each sandstone shows an inflection point corresponding to a critical effective pressure beyond which an accelerated, irrecoverable compaction occurs. Our microstructural observations show that brittle grain crushing initiates at this critical pressure. We also observed distributed cleavage cracking in calcite and intensive kinking in mica. The critical pressures for grain crushing in our sandstones range from 75 to 380 MPa. In general, a sandstone with higher porosity and larger grain size has a critical pressure which is lower than that of a sandstone with lower porosity and smaller grain size. We formulate a Hertzian fracture model to analyze the micromechanics of grain crushing. Assuming that the solid grains have preexisting microcracks with dimensions which scale with grain size, we derive an expression for the critical pressure which depends on the porosity, grain size, and fracture toughness of the solid matrix. The theoretical prediction is in reasonable agreement with our experimental data as well as other data from soil and rock mechanics studies for which the critical pressures range over 3 orders of magnitude.
0
Paper
Citation479
0
Save
0

Structurally Distinct Membrane Nanotubes between Human Macrophages Support Long-Distance Vesicular Traffic or Surfing of Bacteria

Björn Önfelt et al.Dec 15, 2006
+7
R
S
B
We report that two classes of membrane nanotubes between human monocyte-derived macrophages can be distinguished by their cytoskeletal structure and their functional properties. Thin membrane nanotubes contained only F-actin, whereas thicker nanotubes, i.e., those > approximately 0.7 microm in diameter, contained both F-actin and microtubules. Bacteria could be trapped and surf along thin, but not thick, membrane nanotubes toward connected macrophage cell bodies. Once at the cell body, bacteria could then be phagocytosed. The movement of bacteria is aided by a constitutive flow of the nanotube surface because streptavidin-coated beads were similarly able to traffic along nanotubes between surface-biotinylated macrophages. Mitochondria and intracellular vesicles, including late endosomes and lysosomes, could be detected within thick, but not thin, membrane nanotubes. Analysis from kymographs demonstrated that vesicles moved in a stepwise, bidirectional manner at approximately 1 microm/s, consistent with their traffic being mediated by the microtubules found only in thick nanotubes. Vesicular traffic in thick nanotubes and surfing of beads along thin nanotubes were both stopped upon the addition of azide, demonstrating that both processes require ATP. However, microtubule destabilizing agents colchicine or nocodazole abrogated vesicular transport but not the flow of the nanotube surface, confirming that distinct cytoskeletal structures of nanotubes give rise to different functional properties. Thus, membrane nanotubes between macrophages are more complex than unvarying ubiquitous membrane tethers and facilitate several means for distal interactions between immune cells.
0

Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones

Daniel Byrne et al.Aug 1, 1988
L
D
D
Earthquakes do not extend updip along the plate interface at most subduction zones all of the way to the plate boundary at the trench axis or deformation front. Rather, the shallowest part of that interface moves mainly through stable, aseismic slip. That part of the plate boundary, referred to here as the aseismic zone, occurs along the base of an accreted wedge of young sediments. The probable primary cause for the existence of this aseismic zone is the stable slip properties of the unconsolidated and semiconsolidated sediments in that zone. Subducted sediment is progressively dewatered and underplated to the base of the overriding plate. Through this process, more consolidated rocks eventually come into contact at depth across both sides of the plate boundary. From the point where sufficiently hard rock is found across the plate interface, that interface will change its slip behavior to unstable stick‐slip sliding, which is characteristic of consolidated material under most conditions. This type of motion is accommodated seismically as episodic slip in large earthquakes. The location of this transition to seismic behavior, referred to as the seismic front, marks the deep end of the aseismic zone and the top of the seismogenic zone, i.e., that part of the plate interface that moves primarily in thrust earthquakes. Several convergent plate margins are discussed to illustrate the seismic front and the aseismic zone. We find that the seismic front defined by smaller earthquakes that occur during the interval between large events is nearly the same as that for large events as inferred from the locations of their aftershocks. The location of the seismic front is important for making estimates of the maximum possible size of thrust earthquakes along the plate boundary because it delimits the trenchward limit of the potential rupture area of these events. The size of large thrust earthquakes is proportional to rupture area and to at least the cube of the downdip width, W, of that area. Thus by defining the location of the seismic front for convergent margins it is possible to make better estimates of W and hence to deduce the maximum size of future interplate earthquakes. The average repeat time of such events is also related to W and so better estimates of average repeat time are possible from improved knowledge of W. The hypothesis that the location of the seismic front is related to the maximum depth of subduction of unconsolidated sediment has implications for forearc mechanics. We use a mechanical analysis, laboratory modeling, and multichannel seismic information to develop a simple model explaining the growth of forearcs. The outer‐arc high or trench‐slope break that occurs arcward of most accretionary wedges represents an abrupt change in the critical taper of the accretionary wedge. We argue that that change is caused by a large arcward increase in the strength of the material within the overriding plate. That stronger material is called the backstop. Our laboratory modeling experiments indicate that a backstop with a trenchward‐dipping upper surface results in the development of an overlying structure that includes all of the primary morphologic features observed in modern forearcs. In our modeling an accretionary wedge develops trenchward of the backstop, an outer‐arc high develops above the trenchward toe of the backstop, and farther arcward a passive forearc basin forms above the stronger material of the backstop. This model is consistent with the observation that earthquakes do not extend updip along the plate interface all the way to the trench axis. We hypothesize that plate motion is accommodated seismically along the base of the consolidated backstop and mostly or entirely aseismically trenchward of the toe of the backstop along the base of the accretionary wedge. At several margins the seismic front is approximately coincident with the outer‐arc high, supporting this interpretation.
0
Paper
Citation430
0
Save
0

Great thrust earthquakes and aseismic slip along the plate boundary of the Makran Subduction Zone

Daniel Byrne et al.Jan 10, 1992
D
L
D
The Makran subduction zone of Iran and Pakistan exhibits strong variation in seismicity between its eastern and western segments and has one of the world's largest forearcs. We determine the source parameters for 14 earthquakes at Makran including the great ( M w 8.1) earthquake of 1945 (the only instrumentally recorded great earthquake at Makran); we determine the loci of seismic and aseismic slip along the plate boundary, and we assess the effects of the large forearc and accretionary wedge on the style of plate boundary slip. We apply body waveform inversions and, for small‐magnitude events, use first motions of P waves to estimate earthquake source parameters. For the 1945 event we also employ dislocation modeling of uplift data. We find that the earthquake of 1945 in eastern Makran is an interplate thrust event that ruptured approximately one‐fifth the length of the subduction zone. Nine smaller events in eastern Makran that are also located at or close to the plate interface have thrust mechanisms similar to that of the 1945 shock. Seaward of these thrust earthquakes lies the shallowest 70–80 km of the plate boundary; we find that this segment and the overlying accretionary wedge remain aseismic both during and between great earthquakes. This aseismic zone, as in other subduction zones, lies within that part of the accretionary wedge that consists of largely uconsolidated sediments (seismic velocities less than 4.0 km/s). The existence of thrust earthquakes indicates that either the sediments along the plate boundary in eastern Makran become sufficiently well consolidated and de watered about 70 km from the deformation front or older, lithified rocks are present within the forearc so that stick‐slip sliding behavior becomes possible. This study shows that a large quantity of unconsolidated sediment does not necessarily indicate a low potential for great thrust earthquakes. In contrast to the east, the plate boundary in western Makran has no clear record of historic great events, nor has modem instrumentation detected any shallow thrust events for at least the past 25 years. Most earthquakes in western Makran occur within the downgoing plate at intermediate depths. The large change in seismicity between eastern and western Makran along with two shallow events that exhibit right‐lateral strike‐slip motion in central Makran suggest segmentation of the subduction zone. Two Paleozoic continental blocks dominate the overriding plate. The boundary between them is approximately coincident with the transition in seismicity. Although relative motion between these blocks may account for some of the differing seismic behavior, the continuity of the deformation front and of other tectonic features along the subduction zone suggests that the rate of subduction does not change appreciably from east to west. The absence of plate boundary events in western Makran indicates either that entirely aseismic subduction occurs or that the plate boundary is currently locked and experiences great earthquakes with long repeat times. Evidence is presently inconclusive concerning which of these two hypotheses is most correct. The presence of well‐defined late Holocene marine terraces along portions of the coasts of eastern and western Makran could be interpreted as evidence that both sections of the arc are capable of generating large plate boundary earthquakes. If that hypothesis is correct, then western Makran could produce a great earthquake or it could rupture as a number of segments in somewhat smaller‐magnitude events. Alternatively, it is possible that western Makran is significantly different from eastern Makran and experiences largely aseismic slip at all times. A knowledge of the velocity structure and nature of the state of consolidation or lithification of rocks at depth in the interior portion of the forearc of western Makran should help to ascertain whether that portion of the plate boundary moves aseismically or ruptures in large to great earthquakes. A resolution of this question has important implications for seismic hazard not only for western Makran but also for other margins, such as the Cascadia subduction zone of western North America, where historical thrust events have not occurred.
0
Paper
Citation423
0
Save
Load More