ML
Mei‐Huey Lin
Author with expertise in DNA Nanotechnology and Bioanalytical Applications
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
5,600
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

GENCODE: The reference human genome annotation for The ENCODE Project

Jennifer Harrow et al.Sep 1, 2012
+38
J
A
J
The GENCODE Consortium aims to identify all gene features in the human genome using a combination of computational analysis, manual annotation, and experimental validation. Since the first public release of this annotation data set, few new protein-coding loci have been added, yet the number of alternative splicing transcripts annotated has steadily increased. The GENCODE 7 release contains 20,687 protein-coding and 9640 long noncoding RNA loci and has 33,977 coding transcripts not represented in UCSC genes and RefSeq. It also has the most comprehensive annotation of long noncoding RNA (lncRNA) loci publicly available with the predominant transcript form consisting of two exons. We have examined the completeness of the transcript annotation and found that 35% of transcriptional start sites are supported by CAGE clusters and 62% of protein-coding genes have annotated polyA sites. Over one-third of GENCODE protein-coding genes are supported by peptide hits derived from mass spectrometry spectra submitted to Peptide Atlas. New models derived from the Illumina Body Map 2.0 RNA-seq data identify 3689 new loci not currently in GENCODE, of which 3127 consist of two exon models indicating that they are possibly unannotated long noncoding loci. GENCODE 7 is publicly available from gencodegenes.org and via the Ensembl and UCSC Genome Browsers.
0
Citation4,487
0
Save
0

Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis

Andrea Pauli et al.Nov 22, 2011
+8
M
E
A
Long noncoding RNAs (lncRNAs) comprise a diverse class of transcripts that structurally resemble mRNAs but do not encode proteins. Recent genome-wide studies in humans and the mouse have annotated lncRNAs expressed in cell lines and adult tissues, but a systematic analysis of lncRNAs expressed during vertebrate embryogenesis has been elusive. To identify lncRNAs with potential functions in vertebrate embryogenesis, we performed a time-series of RNA-seq experiments at eight stages during early zebrafish development. We reconstructed 56,535 high-confidence transcripts in 28,912 loci, recovering the vast majority of expressed RefSeq transcripts while identifying thousands of novel isoforms and expressed loci. We defined a stringent set of 1133 noncoding multi-exonic transcripts expressed during embryogenesis. These include long intergenic ncRNAs (lincRNAs), intronic overlapping lncRNAs, exonic antisense overlapping lncRNAs, and precursors for small RNAs (sRNAs). Zebrafish lncRNAs share many of the characteristics of their mammalian counterparts: relatively short length, low exon number, low expression, and conservation levels comparable to that of introns. Subsets of lncRNAs carry chromatin signatures characteristic of genes with developmental functions. The temporal expression profile of lncRNAs revealed two novel properties: lncRNAs are expressed in narrower time windows than are protein-coding genes and are specifically enriched in early-stage embryos. In addition, several lncRNAs show tissue-specific expression and distinct subcellular localization patterns. Integrative computational analyses associated individual lncRNAs with specific pathways and functions, ranging from cell cycle regulation to morphogenesis. Our study provides the first systematic identification of lncRNAs in a vertebrate embryo and forms the foundation for future genetic, genomic, and evolutionary studies.
0
Citation749
0
Save
2

Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues

Sinem Saka et al.Aug 19, 2019
+16
J
Y
S
Spatial mapping of proteins in tissues is hindered by limitations in multiplexing, sensitivity and throughput. Here we report immunostaining with signal amplification by exchange reaction (Immuno-SABER), which achieves highly multiplexed signal amplification via DNA-barcoded antibodies and orthogonal DNA concatemers generated by primer exchange reaction (PER). SABER offers independently programmable signal amplification without in situ enzymatic reactions, and intrinsic scalability to rapidly amplify and visualize a large number of targets when combined with fast exchange cycles of fluorescent imager strands. We demonstrate 5- to 180-fold signal amplification in diverse samples (cultured cells, cryosections, formalin-fixed paraffin-embedded sections and whole-mount tissues), as well as simultaneous signal amplification for ten different proteins using standard equipment and workflows. We also combined SABER with expansion microscopy to enable rapid, multiplexed super-resolution tissue imaging. Immuno-SABER presents an effective and accessible platform for multiplexed and amplified imaging of proteins with high sensitivity and throughput. A DNA-based amplification scheme enables highly multiplexed immunofluorescence imaging
8

SnapKin: a snapshot deep learning ensemble for kinase-substrate prediction from phosphoproteomics data

Mei‐Huey Lin et al.Feb 25, 2021
+6
T
M
M
Abstract Mass spectrometry (MS)-based phosphoproteomics enables the quantification of proteome-wide phosphorylation in cells and tissues. A major challenge in MS-based phosphoproteomics lies in identifying the substrates of kinases, as currently only a small fraction of substrates identified can be confidently linked with a known kinase. By leveraging large-scale phosphoproteomics data, machine learning has become an increasingly popular approach for computationally predicting substrates of kinases. However, the small number of high-quality experimentally validated kinase substrates (true positive) and the high data noise in many phosphoproteomics datasets together impact the performance of existing approaches. Here, we aim to develop advanced kinase-substrate prediction methods to address these challenges. Using a collection of seven large phosphoproteomics datasets, including six published datasets and a new muscle differentiation dataset, and both traditional and deep learning models, we first demonstrate that a ‘pseudo-positive’ learning strategy for alleviating small sample size is effective at improving model predictive performance. We next show that a data re-sampling based ensemble learning strategy is useful for improving model stability while further enhancing prediction. Lastly, we introduce an ensemble deep learning model (‘SnapKin’) incorporating the above two learning strategies into a ‘snapshot’ ensemble learning algorithm. We demonstrate that the SnapKin model achieves overall the best performance in kinase-substrate prediction. Together, we propose SnapKin as a promising approach for predicting substrates of kinases from large-scale phosphoproteomics data. SnapKin is freely available at https://github.com/PYangLab/SnapKin .
0

Highly multiplexed in situ protein imaging with signal amplification by Immuno-SABER

Sinem Saka et al.Dec 28, 2018
+16
B
M
S
Probing the molecular organization of tissues requires in situ analysis by microscopy. However current limitations in multiplexing, sensitivity, and throughput collectively constitute a major barrier for comprehensive single-cell profiling of proteins. Here, we report Immunostaining with Signal Amplification By Exchange Reaction (Immuno-SABER), a rapid, highly multiplexed signal amplification method that simultaneously tackles these key challenges. Immuno-SABER utilizes DNA-barcoded antibodies and provides a method for highly multiplexed signal amplification via modular orthogonal DNA concatemers generated by Primer Exchange Reaction. This approach offers the capability to preprogram and control the amplification level independently for multiple targets without in situ enzymatic reactions, and the intrinsic scalability to rapidly amplify and image a large number of protein targets. We validated our approach in diverse sample types including cultured cells, cryosections, FFPE sections, and whole mount tissues. We demonstrated independently tunable 5-180-fold amplification for multiple targets, covering the full signal range conventionally achieved by secondary antibodies to tyramide signal amplification, as well as simultaneous signal amplification for 10 different proteins using standard equipment and workflow. We further combined Immuno-SABER with Expansion Microscopy to enable rapid and highly multiplexed super-resolution tissue imaging. Overall, Immuno-SABER presents an effective and accessible platform for rapid, multiplexed imaging of proteins across scales with high sensitivity.