JK
Jason Karch
Author with expertise in Mitochondrial Dynamics and Reactive Oxygen Species Regulation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
2,973
h-index:
23
/
i10-index:
29
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

c-kit+ cells minimally contribute cardiomyocytes to the heart

Jop Berlo et al.May 1, 2014
If and how the heart regenerates after an injury event is highly debated. c-kit-expressing cardiac progenitor cells have been reported as the primary source for generation of new myocardium after injury. Here we generated two genetic approaches in mice to examine whether endogenous c-kit+ cells contribute differentiated cardiomyocytes to the heart during development, with ageing or after injury in adulthood. A complementary DNA encoding either Cre recombinase or a tamoxifen-inducible MerCreMer chimaeric protein was targeted to the Kit locus in mice and then bred with reporter lines to permanently mark cell lineage. Endogenous c-kit+ cells did produce new cardiomyocytes within the heart, although at a percentage of approximately 0.03 or less, and if a preponderance towards cellular fusion is considered, the percentage falls to below approximately 0.008. By contrast, c-kit+ cells amply generated cardiac endothelial cells. Thus, endogenous c-kit+ cells can generate cardiomyocytes within the heart, although probably at a functionally insignificant level. Whether or not endogenous c-kit+cells residing within the heart contribute cardiomyocytes during physiological ageing or after injury remains unknown; here, using an inducible lineage tracing system, the c-kit+lineage is shown to generate cardiomyocytes at very low levels, and, by contrast, contributes substantially to cardiac endothelial cell generation. Endogenous cardiac progenitor cells expressing the tyrosine kinase/proto-oncogene c-kit have been reported as the primary source for generation of new myocardium after injury, but other studies with adult cardiac-resident c-kit+ cells have reported the opposite: that these cells cannot generate cardiomyocytes in vivo. Jeffrey Molkentin and colleagues address this question using an inducible lineage tracing system. They find that rates of cardiomyocyte formation from the c-kit+ lineage are extremely low, and not of physiological significance. By contrast, c-kit+ cells contribute substantially to the production of endothelial cells in the heart.
0
Citation758
0
Save
0

Fibroblast-specific TGF-β–Smad2/3 signaling underlies cardiac fibrosis

Hadi Khalil et al.Sep 10, 2017
The master cytokine TGF-β mediates tissue fibrosis associated with inflammation and tissue injury. TGF-β induces fibroblast activation and differentiation into myofibroblasts that secrete extracellular matrix proteins. Canonical TGF-β signaling mobilizes Smad2 and Smad3 transcription factors that control fibrosis by promoting gene expression. However, the importance of TGF-β–Smad2/3 signaling in fibroblast-mediated cardiac fibrosis has not been directly evaluated in vivo. Here, we examined pressure overload–induced cardiac fibrosis in fibroblast- and myofibroblast-specific inducible Cre-expressing mouse lines with selective deletion of the TGF-β receptors Tgfbr1/2, Smad2, or Smad3. Fibroblast-specific deletion of Tgfbr1/2 or Smad3, but not Smad2, markedly reduced the pressure overload–induced fibrotic response as well as fibrosis mediated by a heart-specific, latency-resistant TGF-β mutant transgene. Interestingly, cardiac fibroblast–specific deletion of Tgfbr1/2, but not Smad2/3, attenuated the cardiac hypertrophic response to pressure overload stimulation. Mechanistically, loss of Smad2/3 from tissue-resident fibroblasts attenuated injury-induced cellular expansion within the heart and the expression of fibrosis-mediating genes. Deletion of Smad2/3 or Tgfbr1/2 from cardiac fibroblasts similarly inhibited the gene program for fibrosis and extracellular matrix remodeling, although deletion of Tgfbr1/2 uniquely altered expression of an array of regulatory genes involved in cardiomyocyte homeostasis and disease compensation. These findings implicate TGF-β–Smad2/3 signaling in activated tissue-resident cardiac fibroblasts as principal mediators of the fibrotic response.
0
Citation682
0
Save
0

Cyclophilin D controls mitochondrial pore–dependent Ca2+ exchange, metabolic flexibility, and propensity for heart failure in mice

John Elrod et al.Sep 30, 2010
Cyclophilin D (which is encoded by the Ppif gene) is a mitochondrial matrix peptidyl-prolyl isomerase known to modulate opening of the mitochondrial permeability transition pore (MPTP). Apart from regulating necrotic cell death, the physiologic function of the MPTP is largely unknown. Here we have shown that Ppif–/– mice exhibit substantially greater cardiac hypertrophy, fibrosis, and reduction in myocardial function in response to pressure overload stimulation than control mice. In addition, Ppif–/– mice showed greater hypertrophy and lung edema as well as reduced survival in response to sustained exercise stimulation. Cardiomyocyte-specific transgene expression of cyclophilin D in Ppif–/– mice rescued the enhanced hypertrophy, reduction in cardiac function, and rapid onset of heart failure following pressure overload stimulation. Mechanistically, the maladaptive phenotype in the hearts of Ppif–/– mice was associated with an alteration in MPTP-mediated Ca2+ efflux resulting in elevated levels of mitochondrial matrix Ca2+ and enhanced activation of Ca2+-dependent dehydrogenases. Elevated matrix Ca2+ led to increased glucose oxidation relative to fatty acids, thereby limiting the metabolic flexibility of the heart that is critically involved in compensation during stress. These findings suggest that the MPTP maintains homeostatic mitochondrial Ca2+ levels to match metabolism with alterations in myocardial workload, thereby suggesting a physiologic function for the MPTP.
0

Targeting Calpain-2-mediated Junctophilin-2 cleavage delays heart failure progression following myocardial infarction

Satadru Lahiri et al.Jul 2, 2024
Coronary heart disease (CHD) is a prevalent cardiac disease that causes over 370,000 deaths annually in the USA. In CHD, occlusion of a coronary artery causes ischemia of the cardiac muscle, which results in myocardial infarction (MI). Junctophilin-2 (JPH2) is a membrane protein that ensures efficient calcium handling and proper excitation-contraction coupling. Studies have identified loss of JPH2 due to calpain-mediated proteolysis as a key pathogenic event in ischemia-induced heart failure (HF). Our findings show that calpain-2-mediated JPH2 cleavage yields increased levels of a C-terminal cleaved peptide (JPH2-CTP) in patients with ischemic cardiomyopathy and mice with experimental MI. We created a novel knock-in mouse model by removing residues 479-SPAGTPPQ-486 to prevent calpain-2-mediated cleavage at this site. Functional and molecular assessment of cardiac function post-MI in cleavage site deletion (CSD) mice showed preserved cardiac contractility and reduced dilation, reduced JPH2-CTP levels, attenuated adverse remodeling, improved T-tubular structure, and normalized SR Ca2+-handling. Adenovirus mediated calpain-2 knockdown in mice exhibited similar findings. Pulldown of CTP followed by proteomic analysis revealed valosin-containing protein (VCP) and BAG family molecular chaperone regulator 3 (BAG3) as novel binding partners of JPH2. Together, our findings suggest that blocking calpain-2-mediated JPH2 cleavage may be a promising new strategy for delaying the development of HF following MI.
0
Citation1
0
Save
1

Misoprostol Treatment Prevents Hypoxia-Induced Cardiac Dysfunction Through a 14-3-3 and PKA regulatory motif on Bnip3

Matthew Martens et al.Oct 10, 2020
Abstract Systemic hypoxia is a common element in most perinatal emergencies and is a known driver of Bnip3 expression in the neonatal heart. Bnip3 plays a prominent role in the evolution of necrotic cell death, disrupting ER calcium homeostasis and initiating mitochondrial permeability transition (MPT). Emerging evidence suggests a cardioprotective role for the prostaglandin E1 analogue misoprostol during periods of hypoxia, but the mechanisms for this protection are not completely understood. Using a combination of mouse and cell models, we tested if misoprostol is cardioprotective during neonatal hypoxic injury by altering Bnip3 function. Here we report that hypoxia elicits mitochondrial-fragmentation, MPT, reduced ejection fraction, and evidence of necroinflammation, which were abrogated with misoprostol treatment or Bnip3 knockout. Through molecular studies we show that misoprostol leads to PKA-dependent Bnip3 phosphorylation at threonine-181, and subsequent redistribution of Bnip3 from mitochondrial Opa1 and the ER through an interaction with 14-3-3 proteins. Taken together, our results demonstrate a role for Bnip3 phosphorylation in the regulation of cardiomyocyte contractile/metabolic dysfunction, and necroinflammation. Furthermore, we identify a potential pharmacological mechanism to prevent neonatal hypoxic injury.
0

Inhibition of mitochondrial permeability transition by deletion of the ANT family and CypD

Jason Karch et al.Dec 27, 2018
The mitochondrial permeability transition pore (MPTP) has resisted molecular identification for decades. The original model of the MPTP had the adenine nucleotide translocator (ANT) as the inner membrane pore-forming component. Indeed, reconstitution experiments showed that recombinant or purified ANT generates MPTP-like pores in lipid bilayers. This model was challenged when mitochondria from Ant1/2 double null mouse liver still showed MPTP activity. Because mice contain and express 3 Ant genes, here we reinvestigated the genetic basis for the ANTs as comprising the MPTP. Liver mitochondria from Ant1, Ant2, and Ant4 deficient mice were highly refractory to Ca2+-induced MPT, and when also given cyclosporine A, MPT was completely inhibited. Moreover, liver mitochondria from mice with quadruple deletion of Ant1, Ant2, Ant4 and Ppif (cyclophilin D, target of CsA) lacked Ca2+-induced MPT. Finally, inner membrane patch clamping in mitochondria from Ant1, Ant2 and Ant4 triple null mouse embryonic fibroblasts (MEFs) showed a loss of MPT-like pores. Our findings suggest a new model of MPT consisting of two distinct molecular components, one of which is the ANTs and the other of which is unknown but requires CypD.