Anatomical connections link the cerebellar cortex with multiple distinct sensory, motor, association, and paralimbic areas of the cerebrum. These projections allow a topographically precise cerebellar modulation of multiple domains of neurological function, and underscore the relevance of the cerebellum for the pathophysiology of numerous disorders in neurology and psychiatry. The majority of fibers that exit the cerebellar cortex synapse in the dentate nuclei (DN) before reaching extracerebellar structures such as cerebral cortex. Although the DN have a central position in the anatomy of the cerebello-cerebral circuits, the functional neuroanatomy of human DN remains largely unmapped. Neuroimaging research has redefined broad categories of functional division in the human brain showing that primary processing, attentional (task positive) processing, and default-mode (task negative) processing are three central poles of neural macro-scale functional organization. This new macro-scale understanding of the range and poles of brain function has revealed that a broad spectrum of human neural processing categories (primary, task positive, task negative) is represented not only in the cerebral cortex, but also in the thalamus, striatum, and cerebellar cortex. Whether functional organization in DN obeys a similar set of macroscale divisions, and whether DN are yet another compartment of representation of a broad spectrum of human neural processing categories, remains unknown. Here we show for the first time that human DN is optimally divided into three functional territories as indexed by high spatiotemporal resolution resting-state MRI in 60 healthy adolescents, and that these three distinct territories contribute uniquely to default-mode, salience-motor, and visual brain networks. These conclusions are supported by novel analytical strategies in human studies of DN organization, including 64-channel MRI imaging, data-driven methods, and replication in an independent sample. Our findings provide a systems neuroscience substrate for cerebellar output to influence multiple broad categories of neural control - namely default-mode, attentional, and multiple unimodal streams of information processing including motor and visual. They also provide a validated data-driven mapping of functions in human DN, crucial for the design of methodology and interpretation of results in future neuroimaging studies of brain function and dysfunction.