SA
Sheeba Anteraper
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
20
h-index:
17
/
i10-index:
26
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
8

Gamma Frequency Sensory Stimulation in Probable Mild Alzheimer’s Dementia Patients: Results of a Preliminary Clinical Trial

Diane Chan et al.Mar 3, 2021
SUMMARY Non-invasive G amma EN trainment U sing S ensory stimuli (GENUS) at 40Hz reduced Alzheimer’s disease (AD) pathology, prevented cerebral atrophy and improved performance during behavioral testing in mouse models of AD. We report data from a safety study ( NCT04042922 ) and a randomized, placebo-controlled trial in participants with probable mild AD dementia after 3 months of one-hour daily 40Hz light and sound GENUS ( NCT04055376 ) to assess safety, compliance, entrainment and possible effects on brain structure, function, sleep and cognitive function. GENUS was well-tolerated and compliance was high in both groups. Electroencephalography recordings show that our GENUS device safely and effectively induced 40Hz entrainment in cognitively normal subjects and participants with mild AD. After 3 months of daily stimulation, participants with mild AD in the 40Hz GENUS group showed less ventricular enlargement and stabilization of the hippocampal size compared to the control group. Functional connectivity increased in both the default mode network and the medial visual network after 3 months of stimulation. Circadian rhythmicity also improved with GENUS. Compared to controls, the active group performed better on the face-name association delayed recall test. These results suggest that 40Hz GENUS can be used safely at home daily and shows favorable outcomes on cognitive function, daily rhythms, and structural and functional MRI biomarkers of AD-related degeneration. These results support further evaluation of GENUS in larger and longer clinical trials to evaluate its potential as a disease modifying therapeutic for Alzheimer’s disease.
0

Abnormal function in dentate nuclei precedes the onset of psychosis: a resting-state fMRI study in high-risk individuals

Sheeba Anteraper et al.Mar 2, 2021
ABSTRACT Objective The cerebellum serves a wide range of functions and is suggested to be composed of discrete regions dedicated to unique functions. We recently developed a new parcellation of the dentate nuclei (DN), the major output nuclei of the cerebellum, which optimally divides the structure into three functional territories that contribute uniquely to default-mode, motor-salience, and visual processing networks as indexed by resting-state functional connectivity (RsFc). Here we test for the first time whether RsFc differences in the DN precede the onset of psychosis in individuals at risk of developing schizophrenia. Methods We used the MRI dataset from the Shanghai At Risk for Psychosis study that included subjects at high risk to develop schizophrenia (N=144), with longitudinal follow-up to determine which subjects developed a psychotic episode within one year of their fMRI scan (converters N=23). Analysis used the three functional parcels (default-mode, salience-motor, and visual territory) from the DN as seed regions of interest for whole-brain RsFc analysis. Results RsFc analysis revealed abnormalities at baseline in high-risk individuals who developed psychosis, compared to high-risk individuals who did not develop psychosis. The nature of the observed abnormalities was found to be anatomically specific such that abnormal RsFc was localized predominantly in cerebral cortical networks that matched the three functional territories of the DN that were evaluated. Conclusions We show for the first time that abnormal RsFc of the DN may precede the onset of psychosis. This new evidence highlights the role of the cerebellum as a potential target for psychosis prediction and prevention.
0

Improvising at Rest: Differentiating Jazz and Classical Music Training with Resting State Functional Connectivity

Alexander Belden et al.Aug 11, 2019
Jazz improvisation offers a model for creative cognition, as it involves the real-time creation of a novel, information-rich product. Previous research has shown that when musicians improvise, they recruit regions in the Default Mode Network (DMN) and Executive Control Network (ECN). Here, we ask whether these findings from task-fMRI studies might extend to intrinsic differences in resting state functional connectivity. We compared Improvising musicians, Classical musicians, and Minimally Musically Trained (MMT) controls in seed-based functional connectivity and network analyses in resting state functional MRI. We also examined the functional correlates of behavioral performance in musical improvisation and divergent thinking. Seed-based analysis consistently showed higher connectivity in ventral DMN (vDMN) and bilateral ECN in both groups of musically trained individuals as compared to MMT controls, with additional group differences in primary visual network, precuneus network, and posterior salience network. In particular, primary visual network connectivity to DMN and ECN was highest in Improvisational musicians, whereas within-network connectivity of vDMN and precuneus network was higher in both Improvisational and Classical musicians than in MMT controls; in contrast, connectivity between posterior salience network and superior parietal lobule was highest in Classical musicians. Furthermore, graph-theoretical analysis indicated heightened betweenness centrality, clustering, and local efficiency in Classical musicians. Taken together, results suggest that heightened functional connectivity among musicians can be explained by higher within-network connectivity (more tight-knit cortical networks) in Classical musicians, as opposed to more disperse, globally-connected cortical networks in Improvisational musicians.
0

Functional Territories of Human Dentate Nucleus

Xavier Guell et al.Apr 13, 2019
Anatomical connections link the cerebellar cortex with multiple distinct sensory, motor, association, and paralimbic areas of the cerebrum. These projections allow a topographically precise cerebellar modulation of multiple domains of neurological function, and underscore the relevance of the cerebellum for the pathophysiology of numerous disorders in neurology and psychiatry. The majority of fibers that exit the cerebellar cortex synapse in the dentate nuclei (DN) before reaching extracerebellar structures such as cerebral cortex. Although the DN have a central position in the anatomy of the cerebello-cerebral circuits, the functional neuroanatomy of human DN remains largely unmapped. Neuroimaging research has redefined broad categories of functional division in the human brain showing that primary processing, attentional (task positive) processing, and default-mode (task negative) processing are three central poles of neural macro-scale functional organization. This new macro-scale understanding of the range and poles of brain function has revealed that a broad spectrum of human neural processing categories (primary, task positive, task negative) is represented not only in the cerebral cortex, but also in the thalamus, striatum, and cerebellar cortex. Whether functional organization in DN obeys a similar set of macroscale divisions, and whether DN are yet another compartment of representation of a broad spectrum of human neural processing categories, remains unknown. Here we show for the first time that human DN is optimally divided into three functional territories as indexed by high spatiotemporal resolution resting-state MRI in 60 healthy adolescents, and that these three distinct territories contribute uniquely to default-mode, salience-motor, and visual brain networks. These conclusions are supported by novel analytical strategies in human studies of DN organization, including 64-channel MRI imaging, data-driven methods, and replication in an independent sample. Our findings provide a systems neuroscience substrate for cerebellar output to influence multiple broad categories of neural control - namely default-mode, attentional, and multiple unimodal streams of information processing including motor and visual. They also provide a validated data-driven mapping of functions in human DN, crucial for the design of methodology and interpretation of results in future neuroimaging studies of brain function and dysfunction.
0

Ultra-high field (7T) functional magnetic resonance imaging in amyotrophic lateral sclerosis: a pilot study

Robert Barry et al.Dec 3, 2020
Abstract Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the central nervous system that results in a progressive loss of motor function and ultimately death. It is critical, yet also challenging, to develop non-invasive biomarkers to identify, localize, measure and/or track biological mechanisms implicated in ALS. Such biomarkers may also provide clues to identify potential molecular targets for future therapeutic trials. Herein we report on a pilot study involving twelve participants with ALS and nine age-matched healthy controls who underwent high-resolution resting state functional magnetic resonance imaging at an ultra-high field of 7 Tesla. A group-level whole-brain analysis revealed a disruption in long-range functional connectivity between the superior sensorimotor cortex (in the precentral gyrus) and bilateral cerebellar lobule VI. Post hoc analyses using atlas-derived left and right cerebellar lobule VI revealed decreased functional connectivity in ALS participants that predominantly mapped to bilateral postcentral and precentral gyri. Cerebellar lobule VI is a transition zone between anterior motor networks and posterior non-motor networks in the cerebellum, and is associated with a wide range of key functions including complex motor and cognitive processing tasks. Our observation of the involvement of cerebellar lobule VI adds to the growing number of studies implicating the cerebellum in ALS. Future avenues of scientific investigation should consider how high-resolution imaging at 7T may be leveraged to visualize differences in functional connectivity disturbances in various genotypes and phenotypes of ALS along the ALS-frontotemporal dementia spectrum.
10

Resting State Functional Connectivity Predicts Future Changes in Sedentary Behavior

Timothy Morris et al.Jan 27, 2021
Abstract Information about a person’s available energy resources is integrated in daily behavioral choices that weigh motor costs against expected rewards. It has been posited that humans have an innate attraction towards effort minimization and that executive control is required to overcome this prepotent disposition. With sedentary behaviors increasing at the cost of millions of dollars spent in health care and productivity losses due to physical inactivity-related deaths, understanding the predictors of sedentary behaviors will improve future intervention development and precision medicine approaches. In 64 healthy older adults participating in a 6-month aerobic exercise intervention, we use neuroimaging (resting state functional connectivity), baseline measures of executive function and accelerometer measures of time spent sedentary to predict future changes in objectively measured time spent sedentary in daily life. Using cross-validation and bootstrap resampling, our results demonstrate that functional connectivity between 1) the anterior cingulate cortex and the supplementary motor area and 2) the right anterior insula and the left temporoparietal/temporooccipital junction, predict changes in time spent sedentary, whereas baseline cognitive, behavioral and demographic measures do not. Previous research has shown activation in and between the anterior cingulate and supplementary motor area as well as in the right anterior insula during effort avoidance and tasks that integrate motor costs and reward benefits in effort-based decision making. Our results add important knowledge toward understanding mechanistic associations underlying complex sedentary behaviors.
1

Cerebello-cerebral Functional Connectivity Networks in Major Depressive Disorder: A CAN-BIND-1 Study Report

Sheeba Anteraper et al.Jun 28, 2021
Abstract Objective Neuroimaging studies have demonstrated aberrant structure and function of the “cognitive-affective cerebellum” in Major Depressive Disorder (MDD), although the specific role of the cerebello-cerebral circuitry in this population remains largely uninvestigated. The objective of this study was to delineate the role of cerebellar functional networks in depression. Methods A total of 308 unmedicated participants completed resting-state functional magnetic resonance imaging scans, of which 247 (148 MDD; 99 Healthy Controls, HC) were suitable for this study. Seed-based resting-state functional connectivity (RsFc) analysis was performed using three cerebellar regions of interest (ROIs): ROI 1 corresponded to default mode network (DMN) / inattentive processing; ROI 2 corresponded to attentional networks including frontoparietal, dorsal attention, and ventral attention; ROI 3 corresponded to motor processing. These ROIs were delineated based on prior functional gradient analyses of the cerebellum. A general linear model was used to perform within-group and between-group comparisons. Results In comparison to HC, participants with MDD displayed increased RsFc within the cerebello-cerebral DMN (ROI 1 ) and significantly elevated RsFc between the cerebellar ROI 1 and bilateral angular gyrus at a voxel threshold ( p < 0.001, two-tailed) and at a cluster level ( p < 0.05, FDR-corrected). Group differences were non-significant for ROI 2 and ROI 3 . Conclusions These results contribute to the development of a systems neuroscience approach to the diagnosis and treatment of MDD. Specifically, our findings confirm previously reported associations between MDD, DMN, and cerebellum, and highlight the promising role of these functional and anatomical locations for the development of novel imaging-based biomarkers and targets for neuromodulation therapies.