SK
Sunjong Kwon
Author with expertise in Cancer Stem Cells and Tumor Metastasis
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
1
h-index:
13
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
18

A Novel Mouse Model that Recapitulates the Heterogeneity of Human Triple Negative Breast Cancer

Zinab Doha et al.Oct 7, 2022
+21
N
X
Z
Abstract Triple-negative breast cancer (TNBC) patients have a poor prognosis and few treatment options. Mouse models of TNBC are important for development of new targeted therapies, but few TNBC mouse models exist. Here, we developed a novel TNBC murine model by mimicking two common TNBC mutations with high co-occurrence: amplification of the oncogene MYC and deletion of the tumor suppressor PTEN. This Myc;Ptenfl murine model develops TN mammary tumors that display histological and molecular features commonly found in human TNBC. We performed deep omic analyses on Myc;Ptenfl tumors including machine learning for morphologic features, bulk and single-cell RNA-sequencing, multiplex immunohistochemistry and single-cell phenotyping. Through comparison with human TNBC, we demonstrated that this new genetic mouse model develops mammary tumors with differential survival that closely resemble the inter- and intra-tumoral and microenvironmental heterogeneity of human TNBC; providing a unique pre-clinical tool for assessing the spectrum of patient TNBC biology and drug response. Statement of significance The development of cancer models that mimic triple-negative breast cancer (TNBC) microenvironment complexities is critical to develop effective drugs and enhance disease understanding. This study addresses a critical need in the field by identifying a murine model that faithfully mimics human TNBC heterogeneity and establishing a foundation for translating preclinical findings into effective human clinical trials.
18
Citation1
0
Save
0

HER2 Cancer Protrusion Growth Signaling Regulated by Unhindered, Localized Filopodial Dynamics

Wai Lam et al.Jun 2, 2019
+15
Y
J
W
Protrusions are plasma membrane extensions that are found in almost every cell in the human body. Cancer cell filopodial and lamellipodial protrusions play key roles in the integral processes of cell motility and signaling underlying tumor invasion and metastasis. HER2 (ErbB-2) is overexpressed in diverse types of tumors and regulates PI3K-pathway-mediated protrusion growth. It is known that HER2 resides at breast cancer cell protrusions, but how protrusion-based HER2 spatiotemporal dynamics shape cancer signaling is unclear. Here, we study how HER2 location and motion regulate protrusion signaling and growth using quantitative spatio-temporal molecular imaging approaches. Our data highlight morphologically-segregated features of filopodial and lamellipodial protrusions, in in vitro 2D breast cancer cells and in vivo intact breast tumor. Functional- segregation parallels morphological-segregation, as HER2 and its activated downstream pAKT-PI3K signaling remain spatially- localized at protrusions, provoking new protrusion growth proximal to sites of HER2 activation. HER2 in SKBR3 breast cancer cell filopodia exhibits fast, linearly-directed motion that is distinct from lamellipodia and non-protrusion subcellular regions (~3-4 times greater diffusion constant, rapid speeds of 2-3 um2/s). Surprisingly, filopodial HER2 motion is passive, requiring no active energy sources. Moreover, while HER2 motion in lamellipodia and non-protrusion regions show hindered diffusion typical of membrane proteins, HER2 diffuses freely within filopodia. We conclude that HER2 activation, propagation, and functional protrusion growth is a local process in which filopodia have evolved to exploit Brownian thermal fluctuations within a barrier-free nanostructure to transduce rapid signaling. These results support the importance of developing filopodia and other protrusion-targeted strategies for cancer.