JA
Jigyasa Arora
Author with expertise in Genomic Insights into Social Insects and Symbiosis
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
5
h-index:
5
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
7

Historical biogeography of early diverging termite lineages (Isoptera: Teletisoptera)

Menglin Wang et al.Dec 3, 2021
+10
Y
M
M
Abstract Termites are social cockroaches distributed throughout warm temperate and tropical ecosystems. The ancestor of modern termites (crown-Isoptera) occurred during the earliest Cretaceous, approximately 140 million years ago, suggesting that both vicariance through continental drift and overseas dispersal may have shaped the distribution of early diverging termite lineages. We reconstruct the historical biogeography of three early diverging termite families – Stolotermitidae, Hodotermitidae, and Archotermopsidae – using the nuclear rRNA genes and mitochondrial genomes of 27 samples. Our analyses confirmed the monophyly of Stolotermitidae + Hodotermitidae + Archotermopsidae (clade Teletisoptera), with Stolotermitidae diverging from a monophyletic Hodotermitidae + Archotermopsidae approximately 100.3 Ma (94.3–110.4 Ma, 95% HPD), and with Archotermopsidae paraphyletic to a monophyletic Hodotermitidae. The Oriental Archotermopsis and the Nearctic Zootermopsis diverged 50.8 Ma (40.7–61.4 Ma, 95% HPD) before land connections between the Palearctic region and North America ceased to exist. The African Hodotermes + Microhodotermes diverged from Anacanthotermes , a genus found in Africa and Asia, 32.1 Ma (24.8–39.9 Ma, 95% HPD), and the most recent common ancestor of Anacanthotermes lived 10.7 Ma (7.3–14.3 Ma, 95% HPD), suggesting that Anacanthotermes dispersed to Asia using the land bridge connecting Africa and Eurasia ∼18–20 Ma. In contrast, the common ancestors of modern Porotermes and Stolotermes lived 20.2 Ma (15.7–25.1 Ma, 95% HPD) and 26.6 Ma (18.3–35.6 Ma, 95% HPD), respectively, indicating that the presence of these genera in South America, Africa, and Australia involved over-water dispersals. Our results suggest that early diverging termite lineages acquired their current distribution through a combination of over-water dispersals and dispersal via land bridges. We clarify the classification by resolving the paraphyly of Archotermopsidae, restricting the family to Archotermopsis and Zootermopsis , and elevating Hodotermopsinae ( Hodotermopsis ) as Hodotermopsidae ( status novum ).
7
Citation3
0
Save
4

Neoisoptera repetitively colonised Madagascar after the Middle Miocene climatic optimum

Menglin Wang et al.Dec 3, 2021
+10
A
S
M
Abstract Madagascar is home to many endemic plant and animal species owing to its ancient isolation from other landmasses. This unique fauna includes several lineages of termites, a group of insects known for their key role in organic matter decomposition in many terrestrial ecosystems. How and when termites colonised Madagascar remains unknown. In this study, we used 601 mitochondrial genomes, 93 of which were generated from Madagascan samples, to infer the global historical biogeography of Neoisoptera, a lineage containing upwards of 80% of described termite species. Our results indicate that Neoisoptera colonised Madagascar between seven to ten times independently during the Miocene, between 8.4-16.6 Ma (95% HPD: 6.1-19.9 Ma). This timing matches that of the colonization of Australia by Neoisoptera. Furthermore, the taxonomic composition of the Neoisopteran fauna of Madagascar and Australia are strikingly similar, with Madagascar harbouring an additional two lineages absent from Australia. Therefore, akin to Australia, Neoisoptera colonised Madagascar during the global expansion of grasslands, possibly helped by the ecological opportunities arising from the spread of this new biome.
4
Paper
Citation1
0
Save
1

The functional evolution of termite gut microbiota

Jigyasa Arora et al.Dec 3, 2021
+14
K
N
J
SUMMARY Termites primarily feed on lignocellulose or soil in association with specific gut microbes. The functioning of the termite gut microbiota is partly understood in a handful of wood-feeding pest species, but remains largely unknown in other taxa. We intend to feel this gap and provide a global understanding of the functional evolution of termite gut microbiota. We sequenced the gut metagenomes of 145 samples representative of the termite diversity. We show that the prokaryotic fraction of the gut microbiota of all termites possesses similar genes for carbohydrate and nitrogen metabolisms, in proportions varying with termite phylogenetic position and diet. The presence of a conserved set of gut prokaryotic genes implies that key nutritional functions were present in the ancestor of modern termites. Furthermore, the abundance of these genes largely correlated with the host phylogeny. Finally, we found that the adaptation to a diet of soil by some termite lineages was accompanied by a change in the stoichiometry of genes involved in important nutritional functions rather than by the acquisition of new genes and pathways. Our results reveal that the composition and function of termite gut prokaryotic communities have been remarkably conserved since termites first appeared ∼150 million years ago. Therefore, the “world smallest bioreactor” has been operating as a multipartite symbiosis composed of termites, archaea, bacteria, and cellulolytic flagellates since its inception.
1
Citation1
0
Save
0

The microbiome wants what it wants: microbial evolution overtakes experimental host-mediated indirect selection

Jigyasa Arora et al.Jul 19, 2019
A
M
J
Microbes ubiquitously inhabit animals and plants, often affecting their host's phenotype. As a result, even in a constant genetic background, the host's phenotype may evolve through indirect selection on the microbiome. 'Microbiome engineering' offers a promising novel approach for attaining desired host traits but has been attempted only a few times. Building on the known role of the microbiome on development in fruit flies, we attempted to evolve earlier eclosing flies by selecting on microbes in the growth media. We carried out parallel evolution experiments in no- and high-sugar diets by transferring media associated with fast-developing fly lines over the course of four rounds of selection. In each round, we used sterile eggs from the same inbred population, and assayed fly mean eclosion times. Ultimately, flies eclosed seven to twelve hours earlier, depending on the diet, but selection had no effect. 16S sequencing showed that the microbiome did evolve, particularly in the no sugar diet, with an increase in alpha diversity over time. Thus, while microbiome evolution did affect host eclosion times, these effects were incidental. Instead, any experimentally enforced selection effects were swamped by independent microbial evolution. These results imply that selection on host phenotypes must be strong enough to overcome other selection pressures simultaneously operating on the microbiome. The independent evolutionary trajectories of the host and the microbiome may limit the extent to which indirect selection on the microbiome can ultimately affect host phenotype. Random-selection lines accounting for independent microbial evolution are essential for experimental microbiome engineering studies.