WT
Wayne Tilley
Author with expertise in Advancements in Prostate Cancer Research
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
7
h-index:
23
/
i10-index:
31
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

MicroRNA-194 promotes lineage plasticity in advanced prostate cancer

Rayzel Fernandes et al.Sep 12, 2019
ABSTRACT MicroRNA-194 (miR-194) promotes prostate cancer metastasis, but the precise molecular mechanisms by which it achieves this are unknown. Here, by integrating Argonaute high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (Ago-HITS-CLIP) with RNA sequencing and exon-intron split analysis, we defined a 163-gene miR-194 “targetome” in prostate cancer. These target genes were predominantly down-regulated through canonical 3’UTR recognition sites and were enriched within pathways involved in cytoskeletal organisation and cell movement. In clinical prostate cancer samples, miR-194 activity was inversely correlated with the androgen receptor (AR) signalling axis. At a mechanistic level, this inverse correlation was explained by down-regulation of miR-194 expression by AR. Accordingly, miR-194 expression and activity was significantly elevated in neuroendocrine prostate cancer (NEPC), an aggressive AR-independent disease subtype. MiR-194 enhanced the transdifferentiation of prostate adenocarcinoma cells to a neuroendocrine-like state, at least in part by targeting FOXA1, a transcription factor with a key role in maintaining the prostate epithelial lineage. Importantly, a miR-194 inhibitor effectively inhibited the growth of cell lines and patient-derived organoids with neuroendocrine features. Overall, our study reveals a novel post-transcriptional mechanism regulating the plasticity of prostate cancer cells and provides a rationale for targeting miR-194 in this NEPC.
0
Citation3
0
Save
4

Lipidomic profiling of clinical prostate cancer reveals targetable alterations in membrane lipid composition

Lisa Butler et al.Oct 28, 2020
Abstract Dysregulated lipid metabolism is a prominent feature of prostate cancer that is driven by androgen receptor (AR) signaling. Herein, we used quantitative mass spectrometry to define the “lipidome” in prostate tumors with matched benign tissues (n=21), independent tissues (n=47), and primary prostate explants cultured with a clinical AR antagonist, enzalutamide (n=43). Significant differences in lipid composition were detected and spatially visualized in tumors compared to matched benign samples. Notably, tumors featured higher proportions of monounsaturated lipids overall and elongated fatty acid chains in phosphatidylinositol and phosphatidylserine lipids. Significant associations between lipid profile and malignancy were validated in unmatched samples, and PL composition was characteristically altered in patient tissues that responded to AR inhibition. Importantly, targeting of altered tumor-related lipid features, via inhibition of acetyl CoA carboxylase 1, significantly reduced cellular proliferation in tissue explants (n=13). This first characterization of the prostate cancer lipidome in clinical tissues revealed enhanced fatty acid synthesis, elongation and desaturation as tumor-defining features, with potential for therapeutic targeting.
4
Citation2
0
Save
17

ACSM1 and ACSM3 regulate prostate cancer fatty acid metabolism to promote tumour growth and constrain ferroptosis

Raj Shrestha et al.Oct 14, 2022
ABSTRACT Prostate tumours are highly reliant on lipids for energy, growth and survival. Activity of the androgen receptor (AR) is associated with reprogramming of lipid metabolic processes in prostate cancer, although the molecular underpinnings of this relationship remain to be fully elucidated. Here, we identified Acyl-CoA Synthetase Medium Chain Family Members 1 and 3 (ACSM1 and ACSM3) as AR-regulated mediators of prostate cancer metabolism and growth. ACSM1 and ACSM3 are upregulated in prostate tumours compared to non-malignant tissues and other cancer types. Both enzymes enhanced proliferation and protected PCa cells from death in vitro , while silencing ACSM3 led to reduced tumour growth in an orthotopic xenograft model. We show that ACSM1 and ACSM3 are major regulators of the PCa lipidome and enhance energy production via fatty acid oxidation. Metabolic dysregulation caused by loss of ACSM1/3 led to mitochondrial oxidative stress, lipid peroxidation and cell death by ferroptosis. Conversely, over-expression of ACSM1/3 enabled PCa cells to survive toxic doses of medium chain fatty acids and promoted resistance to ferroptosis-inducing drugs and AR antagonists. Collectively, these studies uncover a new link between AR and lipid metabolism and position ACSM1 and ACSM3 as key players in prostate cancer progression and therapy resistance.
17
Citation1
0
Save
2

MDM2 Inhibition in Combination with Endocrine Therapy and CDK4/6 Inhibition for the Treatment of ER-Positive Breast Cancer

Neil Portman et al.Jun 12, 2020
Abstract Background Resistance to endocrine therapy is a major clinical challenge in the management of estrogen receptor (ER)-positive breast cancer. In this setting p53 is frequently wildtype and its activity may be suppressed via upregulation of its key regulator MDM2. This underlies our rationale to evaluate MDM2 inhibition as a therapeutic strategy in treatment resistant ER-positive breast cancer. Methods We used the MDM2 inhibitor NVP-CGM097 to treat in vitro and in vivo models alone and in combination with fulvestrant or palbociclib. We perform cell viability, cell cycle, apoptosis and senescence assays to evaluate antitumor effects in p53 wildtype and p53 mutant ER positive cell lines (MCF-7, ZR75-1, T-47D) and MCF-7 lines resistant to endocrine therapy and to CDK4/6 inhibition. We further assess the drug effects in patient-derived xenograft (PDX) models of endocrine-sensitive and -resistant ER positive breast cancer. Results We demonstrate that MDM2 inhibition results in cell cycle arrest and increased apoptosis in p53-wildtype in vitro and in vivo breast cancer models, leading to potent anti-tumour activity. We find that endocrine therapy or CDK4/6 inhibition synergises with MDM2 inhibition but does not further enhance apoptosis. Instead, combination treatments result in profound regulation of cell cycle-related transcriptional programmes, with synergy achieved through increased antagonism of cell cycle progression. Combination therapy pushes cell lines resistant to fulvestrant or palbociclib to become senescent and significantly reduces tumour growth in a fulvestrant resistant patient derived xenograft model. Conclusions We conclude that MDM2 inhibitors in combination with ER degraders or CDK4/6 inhibitors represent a rational strategy for treating advanced, endocrine resistant ER-positive breast cancer, operating through synergistic activation of cell cycle co-regulatory programs.
2
Citation1
0
Save
1

Heparanase promotes Syndecan-1 expression to mediate fibrillar collagen and mammographic density in human breast tissue culturedex vivo

Xuan Huang et al.Jun 5, 2020
Abstract Mammographic density (MD) is a strong and independent factor for breast cancer (BC) risk and is increasingly associated with BC progression. We have previously shown in mice that high MD, which is characterised by the preponderance of a fibrous stroma, facilitates BC xenograft growth and metastasis. This stroma is rich in extracellular matrix (ECM) factors, including heparan sulfate proteoglycans (HSPGs), such as the BC-associated syndecan-1 (SDC1). These proteoglycans tether growth factors, which are released by heparanase (HPSE). MD is positively associated with estrogen exposure and, in cell models, estrogen has been implicated in the upregulation of HPSE, the activity of which promotes SDC expression. Herein we describe a novel measurement approach (single-sided NMR) using a patient-derived explant (PDE) model of normal human (female) mammary tissue cultured ex vivo to investigate the role(s) of HPSE and SDC1 on MD. Relative HSPG gene and protein analyses determined in patient-paired high versus low MD tissues identified SDC1 and SDC4 as potential mediators of MD. Using the PDE model we demonstrate that HPSE promotes SDC1 rather than SDC4 expression and cleavage, leading to increased MD. In this model system, synstatin (SSTN), an SDC1 inhibitory peptide designed to decouple SDC1-ITGαvβ3 parallel collagen alignment, reduced the abundance of fibrillar collagen as assessed by picrosirius red viewed under polarised light, and reduced MD. Our results reveal a potential role for HPSE in maintaining MD via its direct regulation of SDC1, which in turn physically tethers collagen into aligned fibres characteristic of MD. We propose that inhibitors of HPSE and/or SDC1 may afford an opportunity to reduce MD in high BC risk individuals and reduce MD-associated BC progression in conjunction with established BC therapies.