SM
Shannon Murphy
Author with expertise in Global Challenge of Antibiotic Resistance in Bacteria
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
3
h-index:
6
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
11

Vibrio cholerae’s mysterious Seventh Pandemic island (VSP-II) encodes novel Zur-regulated zinc starvation genes involved in chemotaxis and autoaggregation

Shannon Murphy et al.Mar 9, 2021
T
C
B
S
Abstract Vibrio cholerae is the causative agent of cholera, a notorious diarrheal disease that is typically transmitted via contaminated drinking water. The current pandemic agent, the El Tor biotype, has undergone several genetic changes that include horizontal acquisition of two genomic islands (VSP-I and VSP-II). VSP-I and -2 presence strongly correlates with pandemicity; however, the contribution of these islands to V. cholerae ’s life cycle, particularly the 26-kb VSP-II, remains poorly understood. VSP-II-encoded genes are not expressed under standard laboratory conditions, suggesting that their induction requires an unknown signal from the host or environment. One signal that bacteria encounter under both host and environmental conditions is metal limitation. While studying V. cholerae ’s zinc-starvation response in vitro , we noticed that a mutant constitutively expressing zinc-starvation genes (Δ zur ) aggregates in nutrient-poor media. Using transposon mutagenesis, we found that flagellar motility, chemotaxis, and VSP-II encoded genes are required for aggregation. The VSP-II genes encode an AraC-like transcriptional activator (VerA) and a methyl-accepting chemotaxis protein (AerB). Using RNA-seq and lacZ transcriptional reporters, we show that VerA is a novel Zur target and activator of the nearby AerB chemoreceptor. AerB interfaces with the chemotaxis system to drive oxygen-dependent autoaggregation and energy taxis. Importantly, this work suggests a functional link between VSP-II, zinc-starved environments, and aerotaxis, yielding insights into the role of VSP-II in a metal-limited host or aquatic reservoir. Author Summary The Vibrio Seventh Pandemic island was horizontally acquired by El Tor pandemic strain, but its role in pathogenicity or environmental persistence is unknown. A major barrier to VSP-II study was the lack of stimuli favoring its expression. We show that zinc starvation induces expression of this island and describe a transcriptional network that activates a VSP-II encoded aerotaxis receptor. Importantly, aerotaxis may enable V. cholerae to locate more favorable microenvironments, possibly to colonize anoxic portions of the gut or environmental sediments.
11
Citation3
0
Save
0

Endopeptidase regulation as a novel function of the Zur-dependent zinc starvation response

Shannon Murphy et al.Sep 3, 2018
+4
M
L
S
The cell wall is a strong, yet flexible, meshwork of peptidoglycan (PG) that gives a bacterium structural integrity. To accommodate a growing cell, the wall is remodeled by both PG synthesis and degradation. Vibrio cholerae encodes a group of three nearly identical zinc-dependent endopeptidases (EPs) that hydrolyze PG to facilitate cell growth. Two of these (shyA and shyC) are housekeeping genes and form a synthetic lethal pair, while the third (shyB) is not expressed under standard laboratory conditions. To investigate the role of ShyB, we conducted a transposon screen to identify mutations that activate shyB transcription. We found that shyB is induced as part of the Zur-mediated zinc starvation response, a mode of regulation not previously reported for cell wall lytic enzymes. In vivo, ShyB alone was sufficient to sustain cell growth in low-zinc environments. In vitro, ShyB retained its D,D-endopeptidase activity against purified sacculi in the presence of the metal chelator EDTA at a concentration that inhibits ShyA and ShyC. This suggests that ShyB can substitute for the other EPs during zinc starvation, a condition that pathogens encounter while infecting a human host. Our survey of transcriptomic data from diverse bacteria identified other candidate Zur-regulated endopeptidases, suggesting that this adaptation to zinc starvation is conserved in other Gram-negative bacteria.
0

Structural basis of peptidoglycan endopeptidase regulation

Jung‐Ho Shin et al.Nov 15, 2019
+6
A
A
J
Most bacteria surround themselves with a cell wall, a strong meshwork consisting primarily of the polymerized aminosugar peptidoglycan (PG). PG is essential for structural maintenance of bacterial cells, and thus for viability. PG is also constantly synthesized and turned over, the latter process is mediated by PG cleavage enzymes, for example the endopeptidases (EPs). EPs themselves are essential for growth, but also promote lethal cell wall degradation after exposure to antibiotics that inhibit PG synthases ( e.g. , β-lactams). Thus, EPs are attractive targets for novel antibiotics and their adjuvants. However, we have a poor understanding of how these enzymes are regulated in vivo , depriving us of novel pathways for the development of such antibiotics. Here, we have solved crystal structures of the LysM/M23 family peptidase ShyA, the primary EP of the cholera pathogen Vibrio cholerae. Our data suggest that ShyA assumes two drastically different conformations; a more open form that allows for substrate binding, and a closed form, which we predicted to be catalytically inactive. Mutations expected to promote the open conformation caused enhanced activity in vitro and in vivo , and these results were recapitulated in EPs from the divergent pathogens Neisseria gonorrheae and Escherichia coli . Our results suggest that LysM/M23 EPs are regulated via release of the inhibitory Domain1 from the M23 active site, likely through conformational re-arrangement in vivo .Significance Bacteria digest their cell wall following exposure to antibiotics like penicillin. The endopeptidases (EPs) are among the proteins that catalyze cell wall digestion processes after antibiotic exposure, but we do not understand how these enzymes are regulated during normal growth. Herein, we present the structure of the major EP from the diarrheal pathogen Vibrio cholerae. Surprisingly, we find that EPs from this and other pathogens appear to be produced as a largely inactive precursor that undergoes a conformational shift exposing the active site to engage in cell wall digestion. These results enhance our understanding of how EPs are regulated and could open the door for the development of novel antibiotics that overactivate cell wall digestion processes.
0

Genetic determinants of penicillin tolerance in Vibrio cholerae

Anna Weaver et al.Jun 4, 2018
+7
M
J
A
Many bacteria are resistant to killing (''tolerant'') by typically bactericidal antibiotics due to their ability to counteract drug-induced cell damage. Vibrio cholerae, the cholera agent, displays an unusually high tolerance to diverse inhibitors of cell wall synthesis. Exposure to these agents, which in other bacteria leads to lysis and death, results in a breakdown of the cell wall and subsequent sphere formation in V. cholerae. Spheres readily recover to rod-shaped cells upon antibiotic removal, but the mechanisms mediating the recovery process are not well-characterized. Here, we found that the mechanisms of recovery are dependent on environmental conditions. Interestingly, on agarose pads, spheres undergo characteristic stages during the restoration of rod shape. Drug inhibition and microscopy experiments suggest that class A Penicillin Binding Proteins (aPBPs) play a more active role than the Rod system, especially early in sphere recovery. TnSeq analyses revealed that LPS and cell wall biogenesis genes as well as the sigma E cell envelope stress response were particularly critical for recovery. LPS core and O-antigen appear to be more critical for sphere formation/integrity and viability than Lipid A modifications. Overall, our findings demonstrate that the outer membrane is a key contributor to beta lactam tolerance and suggest a role for aPBPs in cell wall biogenesis in the absence of rod-shape cues. Factors required for post-antibiotic recovery could serve as targets for antibiotic adjuvants that enhance the efficacy of antibiotics that inhibit cell wall biogenesis.
18

Class A Penicillin-Binding Protein-mediated cell wall synthesis promotes structural integrity during peptidoglycan endopeptidase insufficiency

Shannon Murphy et al.Jul 3, 2020
+6
Z
A
S
Abstract The bacterial cell wall is composed primarily of peptidoglycan (PG), a poly-aminosugar that is essential to sustain cell shape, growth and structural integrity. PG is synthesized by two different types of synthase complexes (class A Penicillin-binding Proteins [PBP]s/Lpos and Shape, Elongation, Division, Sporulation [SEDS]/class B PBP pairs) and degraded by ‘autolytic’ enzymes to accommodate growth processes. It is thought that autolsyin activity (and particulary the activity of endopeptidases, EPs) is required for PG synthesis and incorporation by creating gaps that are patched and paved by PG synthases, but the exact relationship between autolysins and the separate synthesis machineries remains incompletely understood. Here, we have probed the consequences of EP depletion for PG synthesis in the diarrheal pathogen Vibrio cholerae . We found that EP depletion resulted in severe morphological defects, increased cell mass, a decline in viability, and continuing (yet aberrant) incorporation of cell wall material. Mass increase and cell wall incorporation proceeded in the presence of Rod system inhibitors, but was abolished upon inhibition of aPBPs. However, the Rod system remained functional (i.e., exhibited sustained directed motion) even after prolonged EP depletion, without effectively promoting cell elongation. Lastly, heterologous expression of an EP from Neisseria gonorrhoeae could fully complement growth and morphology of an EP-insufficient V. cholerae . Overall, our findings suggest that in V. cholerae , the Rod system requires endopeptidase activity (but not necessarily direct interaction with EPs) to promote cell expansion and substantial PG incorporation, whereas aPBPs are able to engage in sacculus construction even during severe EP insufficiency. Importance Synthesis and turnover of the bacterial cell wall must be tightly co-ordinated to avoid structural integrity failure and cell death. Details of this coordination are poorly understood, particularly if and how cell wall turnover enzymes are required for the activity of the different cell wall synthesis machines. Our results suggest that in Vibrio cholerae , one class of turnover enzymes, the endopeptidases, are required only for substantial PG incorporation mediated by the Rod system, while the aPBPs maintain structural integrity during endopeptidase insufficiency. Our results suggest that aPBPs are more versatile than the Rod system in their ability to recognize cell wall gaps formed by autolysins other than the major endopeptidases, adding to our understanding of the co-ordination between autolysins and cell wall synthases. A detailed understanding of autolysin biology may promote the development of antibiotics that target these essential turnover processes.