CR
Christian Reimer
Author with expertise in Optical Frequency Combs and Ultrafast Lasers
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(79% Open Access)
Cited by:
5,162
h-index:
31
/
i10-index:
39
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

On-chip generation of high-dimensional entangled quantum states and their coherent control

Michael Kues et al.Jun 1, 2017
The on-chip generation of high-dimensional frequency-entangled states and their spectral-domain manipulation are demonstrated, introducing a powerful and practical platform for quantum information processing. Qubits, the quantum version of bits, are constructed from two-level quantum systems, but in principle a quantum information processor could exploit higher-dimensional quantum systems for operation. These systems with an arbitrary number of levels are often termed qudits and can be generated, for example, from photons. Using qudits instead of qubits can increase sensitivity in quantum imaging and can boost quantum communication schemes. Here, Michael Kues et al. generate two entangled qudits on an integrated photonic chip using a four-wave mixing process. Each qudit encodes a 10-dimensional state, enabling the realization of a quantum system with 100 dimensions. This technique could find application in fibre-based quantum communications. Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science1. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics2, for increasing the sensitivity of quantum imaging schemes3, for improving the robustness and key rate of quantum communication protocols4, for enabling a richer variety of quantum simulations5, and for achieving more efficient and error-tolerant quantum computation6. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states7. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2)8,9,10,11. Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.
0

Quantum optical microcombs

Michael Kues et al.Feb 21, 2019
A key challenge for quantum science and technology is to realize large-scale, precisely controllable, practical systems for non-classical secured communications, metrology and, ultimately, meaningful quantum simulation and computation. Optical frequency combs represent a powerful approach towards this goal, as they provide a very high number of temporal and frequency modes that can result in large-scale quantum systems. The generation and control of quantum optical frequency combs will enable a unique, practical and scalable framework for quantum signal and information processing. Here, we review recent progress on the realization of energy–time entangled optical frequency combs and discuss how photonic integration and the use of fibre-optic telecommunications components can enable quantum state control with new functionalities, yielding unprecedented capability. This Review describes quantum frequency combs that operate via photon entanglement, beginning with mode-locked quantum frequency combs followed by energy–time entanglement methods. The use of photonic integration and fibre-optic telecommunications components in enabling the quantum state control are also discussed.
0

High-dimensional one-way quantum processing implemented on d-level cluster states

Christian Reimer et al.Nov 19, 2018
Taking advantage of quantum mechanics for executing computational tasks faster than classical computers1 or performing measurements with precision exceeding the classical limit2,3 requires the generation of specific large and complex quantum states. In this context, cluster states4 are particularly interesting because they can enable the realization of universal quantum computers by means of a ‘one-way’ scheme5, where processing is performed through measurements6. The generation of cluster states based on sub-systems that have more than two dimensions, d-level cluster states, provides increased quantum resources while keeping the number of parties constant7, and also enables novel algorithms8. Here, we experimentally realize, characterize and test the noise sensitivity of three-level, four-partite cluster states formed by two photons in the time9 and frequency10 domain, confirming genuine multi-partite entanglement with higher noise robustness compared to conventional two-level cluster states6,11–13. We perform proof-of-concept high-dimensional one-way quantum operations, where the cluster states are transformed into orthogonal, maximally entangled d-level two-partite states by means of projection measurements. Our scalable approach is based on integrated photonic chips9,10 and optical fibre communication components, thus achieving new and deterministic functionalities. The creation and manipulation of large quantum states is necessary for quantum information processing tasks. Three-level, four-partite cluster states have now been created in the time and frequency domain of two photons on-chip.
0

Passively mode-locked laser with an ultra-narrow spectral width

Michael Kues et al.Jan 23, 2017
A passively mode-locked laser system featuring cavity filtering and cavity-enhanced nonlinear interactions within an integrated microring resonator produces nanosecond optical pulses with a spectral width of 104.9 MHz. Most mode-locking techniques introduced in the past1,2 focused mainly on increasing the spectral bandwidth to achieve ultrashort, sub-picosecond-long coherent light pulses. By contrast, less importance seemed to be given to mode-locked lasers generating Fourier-transform-limited nanosecond pulses, which feature the narrow spectral bandwidths required for applications in spectroscopy3, the efficient excitation of molecules4, sensing and quantum optics5. Here, we demonstrate a passively mode-locked laser system that relies on simultaneous nested cavity filtering and cavity-enhanced nonlinear interactions within an integrated microring resonator. This allows us to produce optical pulses in the nanosecond regime (4.3 ns in duration), with an overall spectral bandwidth of 104.9 MHz—more than two orders of magnitude smaller than previous realizations. The very narrow bandwidth of our laser makes it possible to fully characterize its spectral properties in the radiofrequency domain using widely available GHz-bandwidth optoelectronic components. In turn, this characterization reveals the strong coherence of the generated pulse train.
0

Practical system for the generation of pulsed quantum frequency combs

Piotr Roztocki et al.Jul 27, 2017
The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation.Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources.Pulsed quantum frequency combs are of particular interest, since they allow the generation of singlefrequency-mode photons, required for scaling state complexity towards, e.g., multi-photon states, and for quantum information applications.However, generation schemes for such pulsed combs have, to date, relied on micro-cavity excitation via lasers external to the sources, being neither versatile nor power-efficient, and impractical for scalable realizations of quantum technologies.Here, we introduce an actively-modulated, nested-cavity configuration that exploits the resonance pass-band characteristic of the micro-cavity to enable a mode-locked and energy-efficient excitation.We demonstrate that the scheme allows the generation of high-purity photons at large coincidence-to-accidental ratios (CAR).Furthermore, by increasing the repetition rate of the excitation field via harmonic modelocking (i.e.driving the cavity modulation at harmonics of the fundamental repetition rate), we managed to increase the pair production rates (i.e.source efficiency), while maintaining a high CAR and photon purity.Our approach represents a significant step towards the realization of fully on-chip, stable, and versatile sources of pulsed quantum frequency combs, crucial for the development of accessible quantum technologies.
0

Broadband electro-optic frequency comb generation in a lithium niobate microring resonator

Mian Zhang et al.Mar 11, 2019
Optical frequency combs consist of equally spaced discrete optical frequency components and are essential tools for optical communications and for precision metrology, timing and spectroscopy. To date, wide-spanning combs are most often generated by mode-locked lasers or dispersion-engineered resonators with third-order Kerr nonlinearity. An alternative comb generation method uses electro-optic (EO) phase modulation in a resonator with strong second-order nonlinearity, resulting in combs with excellent stability and controllability. Previous EO combs, however, have been limited to narrow widths by a weak EO interaction strength and a lack of dispersion engineering in free-space systems. In this work, we overcome these limitations by realizing an integrated EO comb generator in a thin-film lithium niobate photonic platform that features a large electro-optic response, ultra-low optical loss and highly co-localized microwave and optical felds, while enabling dispersion engineering. Our measured EO frequency comb spans more than the entire telecommunications L-band (over 900 comb lines spaced at ~ 10 GHz), and we show that future dispersion engineering can enable octave-spanning combs. Furthermore, we demonstrate the high tolerance of our comb generator to modulation frequency detuning, with frequency spacing finely controllable over seven orders of magnitude (10 Hz to 100 MHz), and utilize this feature to generate dual frequency combs in a single resonator. Our results show that integrated EO comb generators, capable of generating wide and stable comb spectra, are a powerful complement to integrated Kerr combs, enabling applications ranging from spectroscopy to optical communications.
0

Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip

Christian Reimer et al.Sep 14, 2015
Abstract Nonlinear optical processes are one of the most important tools in modern optics with a broad spectrum of applications in, for example, frequency conversion, spectroscopy, signal processing and quantum optics. For practical and ultimately widespread implementation, on-chip devices compatible with electronic integrated circuit technology offer great advantages in terms of low cost, small footprint, high performance and low energy consumption. While many on-chip key components have been realized, to date polarization has not been fully exploited as a degree of freedom for integrated nonlinear devices. In particular, frequency conversion based on orthogonally polarized beams has not yet been demonstrated on chip. Here we show frequency mixing between orthogonal polarization modes in a compact integrated microring resonator and demonstrate a bi-chromatically pumped optical parametric oscillator. Operating the device above and below threshold, we directly generate orthogonally polarized beams, as well as photon pairs, respectively, that can find applications, for example, in optical communication and quantum optics.
0

Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs

Lucia Caspani et al.Apr 28, 2016
Recent development in quantum photonics allowed to start the process of bringing photonic-quantum-based systems out of the lab into real world applications. As an example, devices for the exchange of a cryptographic key secured by the law of quantum mechanics are currently commercially available. In order to further boost this process, the next step is to migrate the results achieved by means of bulky and expensive setups to miniaturized and affordable devices. Integrated quantum photonics is exactly addressing this issue. In this paper we briefly review the most recent advancements in the generation of quantum states of light (at the core of quantum cryptography and computing) on chip. In particular, we focus on optical microcavities, as they can offer a solution to the issue of low efficiency (low number of photons generated) typical of the materials mostly used in integrated platforms. In addition, we show that specifically designed microcavities can also offer further advantages, such as compatibility with existing telecom standard (thus allowing to exploit the existing fiber network) and quantum memories (necessary in turns to extend the communication distance), as well as longitudinal multimode character. This last property (i.e. the increased dimensionality necessary for describing the quantum state of a photon) is achieved thanks to the generating multiple photon pairs on a frequency comb corresponding to the microcavity resonances. Further achievements include the possibility to fully exploit the polarization degree of freedom also for integrated devices. These results pave the way to the generation of integrated quantum frequency combs, that in turn may find application as quantum computing platform.
Load More