Post-translational modifications (PTMs) of α-synuclein (α-syn), e.g. phosphorylation, play an important role in modulating α-syn pathology in Parkinson's disease (PD) and α-synucleinopathies. Accumulation of phosphorylated α-syn fibrils in Lewy bodies and Lewy neurites is the histological hallmark of these diseases. However, it is unclear how phosphorylation relates to α-syn pathology. Here, by combining chemical synthesis and bacterial expression, we obtained homogeneous α-syn fibrils with site-specific phosphorylation at Y39, which exhibits enhanced neuronal pathology in rat primary cortical neurons. We determined the cryo-EM structure of pY39 α-syn fibril, which reveals a new fold of α-syn with pY39 in the center of the fibril core forming electrostatic interaction network with eight charged residues in the N-terminal region of α-syn. This structure composed of residues 1-100 represents the largest α-syn fibril core determined so far. This work provides structural understanding on the pathology of pY39 α-syn fibril, and highlights the importance of PTMs in defining the polymorphism and pathology of amyloid fibrils in neurodegenerative diseases.### Competing Interest StatementThe authors have declared no competing interest.