XR
Xin Ren
Author with expertise in Global Impact of Arboviral Diseases
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
850
h-index:
20
/
i10-index:
33
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

IL-17A produced by αβ T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction

Makoto Kudo et al.Mar 4, 2012
IL-17 is associated with asthma, and THH17 cells are found in the airways of individuals with asthma. Dean Sheppard and his colleagues now report that IL-17A (but not IL-17F) directly enhances contractile responses in airway smooth muscle cells. Mice lacking TH17 cells in the lungs exhibit reduced airway hyper-responsiveness in response to allergen challenge. Emerging evidence suggests that the T helper 17 (TH17) subset of αβ T cells contributes to the development of allergic asthma. In this study, we found that mice lacking the αvβ8 integrin on dendritic cells did not generate TH17 cells in the lung and were protected from airway hyper-responsiveness in response to house dust mite and ovalbumin sensitization and challenge. Because loss of TH17 cells inhibited airway narrowing without any obvious effects on airway inflammation or epithelial morphology, we examined the direct effects of TH17 cytokines on mouse and human airway smooth muscle function. Interleukin-17A (IL-17A), but not IL-17F or IL-22, enhanced contractile force generation of airway smooth muscle through an IL-17 receptor A (IL-17RA)–IL-17RC, nuclear factor κ light-chain enhancer of activated B cells (NF-κB)–ras homolog gene family, member A (RhoA)–Rho-associated coiled-coil containing protein kinase 2 (ROCK2) signaling cascade. Mice lacking integrin αvβ8 on dendritic cells showed impaired activation of this pathway after ovalbumin sensitization and challenge, and the diminished contraction of the tracheal rings in these mice was reversed by IL-17A. These data indicate that the IL-17A produced by TH17 cells contributes to allergen-induced airway hyper-responsiveness through direct effects on airway smooth muscle.
0
Citation412
0
Save
4

Integrin αvβ8 on T cells is responsible for suppression of anti-tumor immunity in multiple syngeneic models and is a promising target for tumor immunotherapy

Eswari Dodagatta-Marri et al.May 15, 2020
Abstract The αvβ8 integrin is a key activator of transforming growth factor β (TGF β), which has been shown to inhibit anti-tumor immunity. Previous work has suggested that αvβ8 on tumor cells could modulate tumor growth and responses to immune checkpoint blockade. We now show that a potent blocking monoclonal antibody against αvβ8 (ADWA-11) causes growth suppression or complete regression in syngeneic models of squamous cell carcinoma (CCK168), mammary cancer (EMT-6), colon cancer (CT26), and prostate cancer (TRAMPC2), especially when it is combined with other immunomodulators (anti-PD-1, anti-CTLA-4 or 4-1BB) or radiotherapy. αvβ8 is expressed on tumor cells in some of these models, but tumor cell expression of αvβ8 is not essential for the beneficial effects of ADWA-11 therapy. αvβ8 is consistently expressed at highest levels on CD4+CD25+ T cells within tumors, and specific deletion of Itgb8 from T cells is as effective as ADWA-11 in suppressing tumor growth. Treatment with ADWA-11 increases expression of a suite of genes in tumor infiltrating CD8+ T cells that are normally inhibited by TGFβ and are involved in tumor cell killing, including Granzyme B and Interferon-γ. These findings solidify αvβ8 integrin as a promising target for cancer immunotherapy, even for tumors that do not express this integrin.
4
Citation3
0
Save
0

Impaired Myofibroblast Proliferation is a Central Feature of Pathologic Post-Natal Alveolar Simplification

Imran Khan et al.Dec 23, 2023
Abstract Premature infants with bronchopulmonary dysplasia (BPD) have impaired alveolar gas exchange due to alveolar simplification and dysmorphic pulmonary vasculature. Advances in clinical care have improved survival for infants with BPD, but the overall incidence of BPD remains unchanged because we lack specific therapies to prevent this disease. Recent work has suggested a role for increased transforming growth factor-beta (TGFβ) signaling and myofibroblast populations in BPD pathogenesis, but the functional significance of each remains unclear. Here, we utilize multiple murine models of alveolar simplification and comparative single-cell RNA sequencing to identify shared mechanisms that could contribute to BPD pathogenesis. Single-cell RNA sequencing reveals a profound loss of myofibroblasts in two models of BPD and identifies gene expression signatures of increased TGFβ signaling, cell cycle arrest, and impaired proliferation in myofibroblasts. Using pharmacologic and genetic approaches, we find no evidence that increased TGFβ signaling in the lung mesenchyme contributes to alveolar simplification. In contrast, this is likely a failed compensatory response, since none of our approaches to inhibit TGFb signaling protect mice from alveolar simplification due to hyperoxia while several make simplification worse. In contrast, we find that impaired myofibroblast proliferation is a central feature in several murine models of BPD, and we show that inhibiting myofibroblast proliferation is sufficient to cause pathologic alveolar simplification. Our results underscore the importance of impaired myofibroblast proliferation as a central feature of alveolar simplification and suggest that efforts to reverse this process could have therapeutic value in BPD.
0

Exosomal miR-224 contributes to hemolymph microbiota homeostasis during bacterial infection in crustacean

Yi Gong et al.Dec 17, 2020
Abstract The modulation of hemolymph microbiota homeostasis is vital for the marine invertebrate innate immunity, while growing evidence shows that exosomes could serves as anti-bacterial immune factors, however, the relationship between exosomes and hemolymph microbiota homeostasis during pathogenic bacteria infection has not been addressed. Here, we determined that exosomes released from Vibrio parahaemolyticus -infected Scylla paramamosain (mud crabs) could reduce the mortality of the host during the infection by maintaining the homeostasis of hemolymph microbiota. We further confirmed that miR-224 was densely packaged in these exosomes and targeting to HSP70, which resulted in disruption of the HSP70-TRAF6 complex to release TRAF6 that allows it to interact with Ecsit. The interaction of TRAF6 with Ecsit regulates the production of mitochondrial ROS (mROS) and Anti-lipopolysaccharide factors (ALFs) expression in recipient hemocytes, which affects homeostasis of hemolymph microbiota in response to the pathogenic bacteria infection in mud crab. To the best of our knowledge, this is the first document that reports the role of exosome in the homeostasis of hemolymph microbiota during pathogen infection and a novel regulatory mechanism and crosstalk between exosomal miRNAs and innate immune response in crustaceans. Author summary Exosomes are small membrane vesicles of endocytic origin which are widely involved in the regulation of a variety of pathological processes in mammals. Yet, although the antibacterial function of exosomes has been discovered for many years, the relationship between exosomes and hemolymph microbiota homeostasis remains unknown. In the present study, we identified the miRNAs packaged by exosomes that were possibly involved in Vibrio parahaemolyticus infection by modulating hemolymph microbiota homeostasis in crustacean mud crab Scylla paramamosain . Moreover, it was found that miR-224 was densely packaged in exosomes after Vibrio parahaemolyticus challenge, resulting in the suppression of HSP70 and disruption of the HSP70-TRAF6 complex in recipient hemocytes, then the released TRAF6 was further interacted with Ecsit to regulate ROS and ALFs levels, which eventually affected hemolymph microbiota homeostasis to cope with pathogenic bacteria infection. Our finding is the first to reveal the relationship between exosomes and hemolymph microbiota homeostasis in animals, which shows a novel molecular mechanism of invertebrate resistance to pathogenic microbial infection.